

veritas iustitia libertas Freie Universität Berlin Fachbereich für Biologie, Chemie und Pharmazie Institut für Chemie und Biochemie Anorganische Chemie // Radiochemie

BACHELORARBEIT

ZUR ERLANGUNG DES AKADEMISCHEN GRADES BACHELOR OF SCIENCE (B.Sc.)

ZUM THEMA

"Qualitative und quantitative Analyse radioaktiver Naturproben mit $\gamma-{\rm Spektroskopie}^{*}$

VORGELEGT VON DANIEL METZSCH

AM 21. September 2007

<u>Inhaltsverzeichnis</u>

I.	Einleitung	3
	a. Natürliche Radioaktivität und Zerfallsreihen	3
	b. Zielsetzungen	5
II.	Messtechnische Grundlagen	6
	a. Grundlagen der γ – Spektroskopie	6
	i. Die Wechselwirkung von γ-Strahlung mit Materie	6
	ii. Der Aufbau eines γ-Spektrums	7
	b. Messgeräte	8
	i. Der Germanium-Lithium-Halbleiterdetektor	8
	ii. Der Natriumiodid-Szintillationsdetektor	9
	iii. Vergleich beider Detektortypen	9
	c. Quantifizierung	10
III.	Experimentelles	11
	a. Strahlenschutz	11
	b. Überblick der verwendeten Messproben	11
	c. Überblick der verwendeten Messgeräte	12
	d. Optimierung der Messergebnisse	13
	e. Beschreibung der Versuche	14
IV.	Ergebnisse und Diskussion	14
	a. Bestimmung der Ansprechwahrscheinlichkeiten	14
	b. Berechnung der quantitativen Zusammensetzung	16
	c. Diskussion der Messergebnisse	17
	i. Die Probe 1	18
	ii. Die Probe 2	20
	iii. Die Probe 3	21
	iv. Die Probe 4	22
	v. Die "Extraktionen" mit Wasser	23
	vi. Die "Extraktionen" mit Salzsäure	23
	vii. Die "Extraktionen" mit Schwefelsäure	25
	viii. Die "Extraktionen" mit EDTA	27
	ix. Zusammenfassung der "Extraktionen"	29
	d. Betrachtung möglicher Fehler	29
	e. Zusammenfassung	31
v.	Anhang	33
	a. Tabellen und Spektren	33
	b. Verzeichnis verwendeter Abkürzungen	55
VI.	Eigenständigkeitserklärung	56
VII.	Literaturverzeichnis	57

I. Einleitung *a. Natürliche Radioaktivität und Zerfallsreihen*

Die natürliche Strahlenbelastung eines jeden Bundesbürgers beträgt im Mittel 2,1 mSv pro Jahr^[1]. Das sonst in Brutreaktoren und in Kernwaffen verwendete Uran hat daran einen erheblichen Anteil. Das Nuklid ²³⁸U ist das am häufigsten in der Natur vorkommende Uranisotop (zu 99,27 %). Abgesehen von ²³⁵U und ²³⁴U sind alle anderen Nuklide synthetisch. Uran kommt nicht gediegen, sondern in Form von über 200 verschiedenen Mineralien vor. Zwei davon bilden die wichtigsten Lagerstätten: die Pechblende (hauptsächlich UO₂) und der Coffinit (USiO₄). ²³²Th ist das in der Natur am häufigsten vorkommende Thoriumnuklid. Es kommt u.a. in Form von Thoriumdioxid (ThO₂) in Monazitsanden (4-12 % ThO₂) vor. Andere Nuklide, die einen beträchtlichen Anteil an der Gesamtbelastung haben, sind z.B. das ²²²Rn und das ⁴⁰K. ²³⁸U zerfällt über Umwege auch zu ²²²Rn. Radon ist das einzige Gas in den radioaktiven Zerfallsreihen (Tabelle 1). Dadurch ist es quasi überall: im Boden, im Wasser, in Mauern und in der Luft. Glücklicherweise beträgt seine Halbwertszeit nicht mal vier Tage. Dennoch schreiben die Experten diesem Nuklid zu, bei Inkorperation ursächlich Lungenkrebs hervorzurufen (Schneeberger Krankheit). Als Zwischenprodukt in der Uran-Radium-Zerfallsreihe findet man ²²²Rn auch in gebirgigen Gegenden, die bekannt für ihren Uranbergbau waren bzw. sind (z.B. das Erzgebirge in Mitteldeutschland). Das erklärt das erhöhte Vorkommen von Radioaktivität in Gebirgsbächen und flüssen in den o.g. Gebieten. Ein weiteres Problem ist die natürliche Exposition durch ⁴⁰K. Durch den hohen Anteil von Kalium im menschlichen Körper macht ⁴⁰K fast 10 % der natürlichen Strahlenbelastung eines Deutschen aus ^[2]. Wenn man vom ⁴⁰K absieht, entstammen die meisten der in der Natur auftauchenden Nuklide den radioaktiven Zerfallsreihen.

Untersucht wird also zunächst in dieser Arbeit, welche Nuklide dieser Zerfallsreihen sich in Uran- und Thoriummineralien nachweisen lassen.

Eingeleitet wurde die Aufklärung der natürlichen radioaktiven Zerfallsreihen durch die Beobachtungen Bequerels (1896) und G. C. Schmidts (1898), dass sich photographische Platten durch Uran- bzw. Thoriumsalze schwarz färbten. Durch viele weitere Untersuchungen in den darauf folgenden Jahren konnten noch mehr Elemente entdeckt werden. So fand beispielsweise das Ehepaar Curie durch Untersuchungen der Pechblende die Elemente Polonium und Radium (1898). Man fand dann heraus, dass ausgehend von einem bestimmten Nuklid immer die gleichen Zerfälle auftreten. So kam es durch Soddy und Fajans im Jahr 1913 zur Einführung der radioaktiven Verschiebungssätze für α - und β -Strahlung:

1. Beim a-Zerfall nimmt die Massenzahl A um vier Einheiten ab, die Ordnungszahl Z um zwei Einheiten (A'=A-4, Z'=Z-2).

2. Beim β⁻-Zerfall ändert sich die Massenzahl A nicht; die Ordnungszahl Z nimmt um eine Einheit zu (A'=A, Z'=Z+1).

Diejenigen Nuklide, die in einem genetischen Zusammenhang stehen, gehören einer Zerfallsreihe an.

T	horiumreihe		Nep	tuniumrei	he	Uran-	Radium-Re	ihe	Ac	tiniumreihe	
Nuklid	t _{1/2}	α,β	Nuklid	t _{1/2}	α,β	Nuklid	t _{1/2}	α,β	Nuklid	t _{1/2}	α,β
²³² Th	1,41·10 ¹⁰ a	α	²³⁷ Np	$2{,}14\cdot10^6{\rm a}$	α	²³⁸ U	$4,47\cdot 10^9$ a	a	²³⁵ U	$7,04\cdot 10^8$ a	α
²²⁸ Ra	5,75 a	β	²³³ Pa	27 d	β	²³⁴ Th	24,1 d	β	²³¹ Th	25,5 h	β
²²⁸ Ac	6,13 h	β^-	²³³ U	$1,\!59\cdot 10^5$ a	α	^{234m} Pa	1,17 min	β^-	²³¹ Pa	$3,\!28\cdot 10^4$ a	α
²²⁸ Th	1,91 a	α	²²⁹ Th	$7,34 \cdot 10^3$ a	α	²³⁴ Pa	6,7 h	β	²²⁷ Ac	21,6 а	α,β-
²²⁴ Ra	3,66 d	α	²²⁵ Ra	14,8 d	β	²³⁴ U	$2,\!44\cdot\!10^5\mathrm{a}$	α	²²⁷ Th	18,72 d	α
²²⁰ Rn	55,6 s	α	²²⁵ Ac	10 d	α	²³⁰ Th	$7,7\cdot 10^4$ a	α	²²³ Fr	22 min	α,β ⁻
²¹⁶ Po	0,15 s	α	²²¹ Fr	4,8 min	α	²²⁶ Ra	1600 a	α	²²³ Ra	11,43 d	α
²¹² Pb	10,64 h	β	²¹⁷ At	0,032 s	α	²²² Rn	3,82 d	α	²¹⁹ At	0,9 min	α,β-
²¹² Bi	60,6 min	α,β-	²¹³ Bi	45 min	α,β ⁻	²¹⁸ Po	3,05 min	α,β ⁻	²¹⁹ Rn	4 s	α
²¹² Po	$3,05 \cdot 10^{-7}$ s	α	²¹³ Po	$4,2 \cdot 10^{-6} \mathrm{s}$	α	²¹⁴ Pb	26,8 min	β	²¹⁵ Bi	7 min	β
²⁰⁸ Tl	3,07 min	β	²⁰⁹ Tl	2,2 min	β	²¹⁸ At	≈2 s	αβ-	²¹⁵ Po	1,78 · 10 ⁻³ s	α,β-
²⁰⁸ Pb	stabil		²⁰⁹ Pb	3,3 h	β	²¹⁸ Rn	0,035 s	α	²¹¹ Pb	36,1 min	β
			²⁰⁹ Bi	stabil		²¹⁴ Bi	19,8 min	αβ-	²¹⁵ At	$\approx 10^{-4} s$	α
						²¹⁴ Po	1,64 · 10 ⁻⁴ s	α	²¹¹ Bi	2,13 min	α,β-
						²¹⁰ Tl	1,3 min	β	^{211m} Po	25,5 s	α
						²¹⁰ Pb	22,3 а	α	²¹¹ Po	0,56 s	α
						²⁰⁶ Hg	8,15 min	β	²⁰⁷ Tl	4,77 min	β
						²¹⁰ Bi	5,01 d	αβ-	²⁰⁷ Pb	stabil	
						²⁰⁶ Tl	4,2 min	β			
						²¹⁰ Po	138,4 d	α			
						²⁰⁶ Pb	stabil				

Tabelle 1: Die radioaktiven Zerfallsreihen mit Zerfallsart und Halbwertszeit (nach [14] S. 110)

Die Glieder einer Zerfallsreihe haben nun nach den Verschiebungssätzen entweder die gleiche Massenzahl oder ihre Massenzahl unterscheidet sich um vier Einheiten. Es sind insgesamt vier verschiedene Zerfallsreihen möglich: die Thoriumreihe, die Neptunium-Reihe, die Uran-Radium Reihe und die Actiniumreihe. Man kann sie der Tabelle 1 entnehmen. Außerdem wird aus der Tabelle ersichtlich, dass diese Verschiebungen von Massenund Ordnungszahl nur durch α - und β -Strahlung zustande kommen. Die γ -Strahlung, um die es später gehen soll, ist meist nur ein Begleiteffekt. Wegen der verschiedenen Halbwertszeiten kommt es zu einem Phänomen, das sich radiochemisches oder radioaktives Gleichgewicht nennt. Durch den angesprochenen genetischen Zusammenhang haben sich über Millionen von Jahren hinweg die Tochternuklide des jeweiligen Tochterelements herausgebildet und angereichert bis die gesamte Zerfallsreihe im radiochemischen Gleichgewicht steht. Bei großen Halbwertszeiten, so wie es bei 238 U(4,47 · 10⁹a) oder 232 Th(1,41 · 10¹⁰a) der Fall ist, kommt es zur Ausbildung eines sakulären Gleichgewichts. Maßgebend für die Einstellung eines solchen Gleichgewichts ist die Halbwertszeit der Tochter, da jene der Mutter viel größer ist. Z.B. hat die ²³⁸U-Tochter ²³⁴Th eine sehr viel kleinere Halbwertszeit, als ²³⁸U. ²³⁴Th zerfällt nun sofort weiter zu ^{234(m)}Pa, wird aber aus ²³⁸U ebenso nachgebildet. Im Gleichgewicht sind dann die Aktivitäten von Mutter und Tochter gleich. Das gilt für die ganze Zerfallsreihe. Das Gleichgewicht stellt sich nach einer Zeit von ca. sieben Halbwertszeiten des

langlebigsten Folgeproduktes ein und ist auch für die Berechnung von Aktivitäten mit γ -Spektroskopie wichtig, da beispielsweise ²³⁸U und ²³²Th gar keine γ -Strahler sind. Deren Berechnung erfolgt über die direkten Töchter.

Es soll in der vorliegenden Arbeit um die γ -spektroskopische Untersuchung radioaktiver Naturproben gehen. Es wird sich dabei um Uran- und Thoriumminerale handeln. Das Verfahren der γ -Spektroskopie wird im nächsten Kapitel näher erläutert. Die, in den Spektren auftauchenden Peaks, werden anhand der Kenntnis der Zerfallsreihen, betreffenden Nukliden zugeordnet.

Nun bleibt die Frage, welche der Nuklide, die in den Zerfallsreihen auftreten, werden tatsächlich im Spektrum zu sehen sein? Die Wahrheit ist, dass das nur ein Bruchteil der möglichen Nuklide ist. Zum einen hat alles ein Ende, so auch jede Zerfallsreihe. Das bedeutet, dass jede der vier Zerfallsreihen mit einem schließlich stabilen Nuklid endet. Außerdem kommt die Neptuniumreihe nicht mehr in der Natur vor. Diese Reihe ist inzwischen auf der Erde zerfallen. Weiter sind natürlich nicht alle Nuklide der Zerfallsreihen γ -aktiv, was Tabelle 2 zeigt. Der wohl wichtigste und vierte Grund liegt aber darin, dass die einzelnen Glieder der Zerfallsreihen sehr verschiedene Halbwertszeiten besitzen, die im Bereich von 10^{10} a (²³²Th) und 0,3µs (²¹²Po) liegen. Radionuklide, die eine so große Halbwertszeit aufweisen, dass sie noch jetzt in der Natur nachzuweisen sind, heißen primordial und, da sie nur sehr langsam zerfallen, könnten sie evtl. für Abbruch der Zerfallsreihe sorgen. Die verwendeten Proben liegen aber schon lang genug in der Natur herum, sodass das kein Problem sein dürfte. Auch sollte es möglich sein, Uran- und Thoriumminerale aufgrund ihrer γ -Spektren eindeutig zu unterscheiden.

Uran-Radium	Actinium	Thorium
 ²³⁴Th, ²³⁴Pa, ²³⁰Th, ²²⁶Ra, ²¹⁴Pb, ²¹⁴Bi, ²¹⁰Pb, ²¹⁰Tl, ^{234m}Pa 	alle außer ²¹⁹ At und ²¹⁵ Bi	²²⁸ Ac, ²²⁸ Th, ²²⁴ Ra, ²¹² Pb, ²¹² Bi, ²⁰⁸ Tl

Tabelle 2: γ – aktive Nuklide in den Zerfallsreihen nach

b. Zielsetzungen

Motivation soll herauszufinden, welche Nuklide also sein, sich γ -spektroskopisch in Uran- und Thoriummineralien finden lassen, und somit durch ihren Zerfall einen (geringen) Beitrag zur natürlichen Radioaktivität leisten. Weiter soll untersucht werden, inwiefern sich aus diesen Gesteinen Radioaktivität eluieren lässt. Dazu werden verschiedene Elutionsmittel benutzt. Darunter ist Wasser, um die Situation auf Halden zu simulieren, auf denen Uran in großem Maßstab gelagert wird. Auch verwendet wird halbkonzentrierte Salz- und konzentrierte Schwefelsäure; das weniger zur Simulation von bspw. saurem Regen, sondern mehr um ein Mal zu sehen, welche Nuklide sich unter "Extremsituationen" eluieren lassen.

Eine Quantifizierung der Proben soll ebenfalls stattfinden. Dabei soll z.B. die Frage geklärt werden, wie viel Uran ein Uranmineral in Anbetracht der ständig stattfindenden Zerfälle von Mutter und Töchtern überhaupt noch enthält. Kurzgefasst sollten diese Ziele erreicht werden:

- Eindeutige Unterscheidbarkeit von Thorium- und Uranmineralien durch qualitative und quantitative Analyse.
- Erforschung der Eluierbarkeit von Thorium- und Uranmineralien. Dabei muss zunächst beantwortet werden, ob und wie sich überhaupt etwas eluieren lässt, und, falls ja, warum (Betrachtung der zugrunde liegenden chemischen Reaktionen).
- Feststellung der Eignung der durchgeführten Versuche für Schüler/ -innen und Praktikanten/-innen.
- Feststellung der Eignung zweier konkurrierender Messsysteme, die in (II.b) vorgestellt werden.

II. Messtechnische Grundlagen

In diesem Kapitel sollen zum einen das Verfahren der γ -Spektroskopie und zum anderen der Weg zur Quantifizierung näher erläutert werden.

a. Grundlagen der γ – Spektroskopie

i. <u>Die Wechselwirkung von γ-Strahlung mit Materie</u>

 γ -Strahlen sind radioaktive Strahlen elektromagnetischer Natur mit sehr kurzer Wellenlänge. Ihre Photonen haben eine Energie von >2,5 keV. Anders als α - oder β -Strahlen sind sie elektrisch ungeladen und lassen sich demnach weder im elektrischen noch im magnetischen Feld ablenken. Ein weiterer wesentlicher Unterschied liegt in der Fähigkeit der Strahlung, Materie zu durchdringen. Hier erzielt auch die γ - Strahlung die besseren Ergebnisse. Während sich a- und B-Strahlen mit beispielsweise Bleiplatten abschirmen lassen, gelingt das bei γ -Strahlung nur bedingt. Hier kann man lediglich eine Halbwertsschicht angeben. Die Halbwertsschicht gibt an, welche Dicke benötigt wird, um die Hälfte der Strahlen abzuschirmen. Nach zwei Halbwertsschichten verbleibt noch ein Viertel der Ausgangsstrahlung usw.. Man stellt experimentell fest, dass γ -Strahlung, anders als Teilchenstrahlung, keine definierte Reichweite in Materie hat, sondern exponentiell absorbiert wird. Das liegt daran, dass der Energieverlust nicht kontinuierlich stattfindet, sondern mit einer gewissen statistischen Wahrscheinlichkeit von einzelnen Ereignissen. Es gibt drei zu diskutierende Effekte: den Photoeffekt, den Comptoneffekt und die Paarbildung. Die einzelnen Effekte werden kurz erklärt:

• <u>Photoeffekt</u>: Beim Photoeffekt wird die Gesamtenergie E_{γ} eines wechselwirkenden γ -Quants einem in der Atomhülle gebundenen Elektron übertragen, das anschließend mit der kinetischen Energie $E_{KIN}=E_{\gamma}-B_i$ (B_i ist die Bindungsenergie des Elektrons in der i-ten Schale) das Atom verlässt. Jedoch ist B_i gegenüber E_{γ} vernachlässigbar klein. Das angeregte Atom sendet nun eine charakteristische Röntgenstrahlung aus.

- <u>Comptoneffekt</u>: Der Comptoneffekt ist die elastische Streuung eines γ-Quants mittlerer Energie an einem Elektron. Elektron und γ-Quant ändern dabei ihre Richtung und Energie. Der Comptoneffekt findet vorzugsweise an äußeren Hüllenelektronen statt.
- <u>Paarbildung</u>: Ab einer bestimmten Schwellenenergie E_γ=2m_ec²≈1,02 MeV setzt im elektrischen Feld des Atomkerns der Paarbildungseffekt ein. Dabei wandeln sich γ-Quanten in ein Elektron und ein Positron um. Die Masse eines jeden Teilchens ist damit der Energie von 0,51 MeV äquivalent. Nachdem das Positron seine kinetische Energie genau wie ein schnelles Elektron abgegeben hat und damit quasi zur Ruhe gekommen ist, vernichtet es sich mit einem schnellen Elektron, wobei zwei charakteristische γ-Quanten der Energie von 0,51 MeV in diametral entgegengesetzter Richtung entstehen.
 - ii. <u>Der Aufbau eines γ-Spektrums</u>

Welcher der drei Effekte nun dominiert, hängt von der Energie der γ -Quanten und der Ordnungszahl der Atome ab. Charakteristisch für γ -Spektren sind die "Photopeaks" oder auch "Full Energy Peaks" genannt, denn nur beim Fotoeffekt wird die gesamte Energie der y-Quanten in einem Schritt abgegeben. Die "Photopeaks" ermöglichen entsprechend der Fingerprint-Zuordnung einzelner Methode die Nuklide mit Tabellen oder Computerprogrammen. Leider sind nicht alle Peaks im Spektrum leicht zuzuordnen. Im so genannten "Compton-Kontinuum", das durch den Comptoneffekt hervorgerufen wird, findet man Linien kleinerer Impulshöhen, die sich überlagern. Ein ideales Spektrometer würde für monoenergetische Photonenstrahlung eine Impulshöhenverteilung in Form einer isolierten, unendlich scharfen Linie hervorrufen. Dazu kommt es aber nicht. Dafür sind im Wesentlichen drei Gründe zu finden:

- 1. Jeder Detektor hat ein endliches Auflösungsvermögen, wodurch eine Linienverbreiterung hervorgerufen wird.
- 2. Ein Teil der Quanten verliert durch Streuung am Detektor selbst oder an anderen Materialien einen Teil seiner Energie.
- 3. Die Photonenenergie wird nicht vollständig im Detektor absorbiert.

Abbildung 1 zeigt ein Beispiel eines γ-Spektrums:

Abbildung 1: Beispiel eines Gamma-Spektrums

b. Messgeräte

Zu unterscheiden sind im Wesentlichen zwei Detektortypen: Szintillations- und Halbleiterdetektoren. Zum einen wird ein Handmessgerät benutzt, das einen Natrium-Iodid-Szintillationsdetektor (Ein-Punkt-Kalibrierung) enthält. Zum anderen wird ein festinstallierter Germanium-Lithium-Halbleiterdetektor (Drei-Punkt-Kalibrierung) verwendet, der an einen PC angeschlossen ist, und mittels geeigneter Software, γ -Spektren auswerten kann. Nachfolgend werden beide Messgeräte vorgestellt. Für eine genauere Diskussion der Messtechnik, wird auf fortgeschrittene Literatur verwiesen (z.B. [3] auf S. 287 ff.).

i. <u>Der Germanium-Lithium-Halbleiterdetektor</u>

Der Germanium-Lithium-Detektor (kurz: Ge(Li)) gehört zur Gruppe der Halbleiterdetektoren. Halbleiterdetektoren bestehen aus einer n- und pdotierten Schicht. Eigentlich ist sie lediglich eine in Sperrrichtung geschaltete Halbleiterdiode. An der Stelle, an der sich die p- und n-Schicht berühren, diffundieren Elektronen bzw. Löcher aus dem n- bzw. p-Bereich mit entgegengesetzter Dotierung. Dadurch entsteht im n-Gebiet eine ortsfeste, positive Raumladung und im p-Bereich eine ortsfeste, negative Raumladung. An der Kontaktfläche der beiden Schichten befinden sich nun nur noch wenige freie Ladungsträger, weshalb man diesen Bereich auch Sperrschicht nennt. (Abbildung 2).

Abbildung 3: Ge(Li) wie im Versuch verwendet

Tritt nun ein γ -Quant durch die Sperrschicht hindurch, entsteht mit einer gewissen Wahrscheinlichkeit durch einen der drei diskutierten Effekte ein hochenergetisches Elektron. Dieses wird in der Sperrschicht abgebremst und bildet dabei wiederum Elektronen-Loch-Paare. Wird nun von außen ein elektrisches Feld angelegt, werden die Elektronen zur Anode, die Löcher zur Kathode gezogen. Der dabei entstehende Strom kann als Spannung an einem Widerstand gemessen werden. Um eine möglichst große Dicke der Sperrschicht zu erhalten, werden bei Ge(Li)-Detektoren die im Germanium enthaltenen Verunreinigungen durch in den Kristall gedriftete Lithiumatome kompensiert. Diese sind bei Raumtemperatur zu beweglich. Man benötigt daher eine Kühlung mit flüssigem Stickstoff (Abbildung 3).

ii. Der Natriumiodid-Szintillationsdetektor

Der Natriumiodid-Szintillationszähler (kurz: NaI-Detektor) besteht prinzipiell aus einem Szintillator, der in diesem Fall ein anorganisches Material (Thalliumdotiertes Natriumiodid) ist, und einem Sekundärelektronenvervielfacher (engl.: Photomultiplier). Beim Durchgang der y-Strahlen durch den Szintillator detektiert dieser die γ -Quanten und die vorhandene Messelektronik bestimmt ihre Energie. Dabei emittiert er Photonen im sichtbaren und ultravioletten Bereich, die Hüllenelektronen senden Lichtblitze, sog. Szintillationen, aus und kehren so in den Grundzustand zurück. Dem NaI-Kristall wird in geringen Mengen Thallium als Aktivator zugesetzt. Beim Durchgang eines schnellen Teilchens werden wieder Elektronen-Loch-Paare gebildet, d.h. das Elektron wird vom Valenzband in das Leitungsband angehoben (gemäß Bändertheorie). Das Szintillationsmaterial wird so gewählt, dass die Quanten den Kristall absorptionsfrei durchqueren können. An der Photokathode angekommen (s. Abbildung 4) lösen die im Szintillator erzeugten Lichtquanten dort ein Elektron geringer Energie. Dieses wird durch ein elektrisches Feld angezogen und in Richtung der Dynoden im Photomultiplier beschleunigt. Diese zählen quasi die ankommenden Elektronen. Die Anzahl der registrierten Teilchen ist dann proportional zu dessen Energie.

Abbildung 4: schematischer Aufbau eines NaI-Detektors aus [13] S. 15

iii. <u>Vergleich beider Detektortypen</u>

Der Vorteil eines Spektrums, das mit einem Halbleiterdetektor aufgenommen wird, liegt in der wesentlich geringeren Linienbreite, die man damit erhält. Die Spektren sind so in einer besseren Auflösung darstellbar (Abbildung 6). Das ist besonders wichtig, wenn die Energien der γ -Quanten nahe beieinander liegen. Damit sollten die Halbleiterdetektoren für qualitative Analysen die bessere Wahl sein. Jedoch haben NaI-Detektoren in der Regel eine höhere Ansprechwahrscheinlichkeit, weshalb sie bei quantitativen Analysen vorzuziehen wären. Abbildung 5 zeigt die Abhängigkeit der Ansprechwahrscheinlichkeit von der Energie beider Detektoren. Wie man sieht, fällt sie mit steigender Energie.

c. Quantifizierung

In den späteren Messungen sollen keine rein qualitativen Aussagen getroffen werden. Es interessiert z.B. auch die Zusammensetzung eines Uranminerals. Dazu müssen einige Formeln zur Berechnung eingeführt werden. Dabei ist zu beachten, dass diese Formeln nur bei einer einheitlich definierten Anordnung der Messproben (Geometrie) gelten. Da die Daten am Ende auch vergleichbar sein sollen, muss die "Geometrie" beim Messen immer übereinstimmen. Somit gelten die folgenden Formeln immer für eine bestimmte "Geometrie". Es gilt

$$A = \frac{R}{\eta \cdot \nu} \quad \text{Gl}(I)$$

wobei: A...Aktivität des Stoffs, R...Nettozählrate pro Sekunde, η ...Ansprechwahrscheinlichkeit des Detektors, v...Zahl der ausgesandten $\gamma-$ Quanten pro Zerfall und

$$m = \frac{A \cdot t_{1/2} \cdot M}{N_A \cdot \ln(2)} \quad Gl(II)$$

wobei: m...Masse, M...molare Masse, t_{1/2}...Halbwertszeit, N_A...Avogadro-Zahl (6,022136 $\cdot 10^{23}$ mol⁻¹).

Nun wird man in einem γ -Spektrum pro Nuklid nicht nur einen Peak finden, sondern durchaus mehrere. Das kommt eben darauf an, bei welchen Energien das jeweils betrachtete Nuklid γ -Quanten emittiert. Demnach muss zur quantitativen Auswertung auch der Energiebereich beachtet werden, in dem der Peak liegt. Somit ist auch die Ansprechwahrscheinlichkeit des Detektors energieabhängig. Zur Bestimmung der Ansprechwahrscheinlichkeit sollte demnach ein Nuklid verwendet werden, das in vielen Energiebereichen Peaks zeigt, um später, zwar mit einer gewissen Nährung, aber doch genauer, als wenn im Spektrum nur ein Peak (Abbildung 1) auftaucht, zu rechnen.

III. Experimentelles *a. Strahlenschutz*

Prinzipiell ist zu sagen, dass hier mit Proben geringer Aktivität gearbeitet wird. Der gesetzlich zulässige Höchstwert von 20 mSv/a wird dadurch nicht überschritten, weder für mich während der sechs Wochen im Labor noch für die Schüler/-innen oder Praktikanten/-innen. Es ist dennoch bekannt, dass ionisierende Strahlung lebendes Gewebe schädigen kann und es sollte daher Folgendes beachtet werden:

- Während des Umgangs mit radioaktiver Strahlung wird ein Stabdosimeter getragen.
- Essen, Trinken und Rauchen im Labor sind streng verboten.
- Inkorperationen und Kontaminationen von bzw. mit radioaktivem Material sind tunlichst zu vermeiden.
- Die Quellen sind nicht mit bloßen Händen sondern nur mit Tiegelzange oder Pinzette zu berühren. Außerdem sollten sie in ausreichendem Abstand vom Körper getragen werden. Sollte man dennoch ein Mal in die Situation kommen, die radioaktiven Stoffe mit den Händen tragen zu müssen, sind Handschuhe zu tragen, um Kontaminationen zu vermeiden.
- Es ist hier besonders wichtig, möglichst sauber zu arbeiten. Anhand von Wischtests sind die Oberflächen im Labor regelmäßig auf Kontaminationen zu prüfen und ggf. zu reinigen.
- Die Arbeitszeit mit radioaktiven Substanzen sollte so gering wie möglich sein.
- Da hier teilweise mit radioaktiven Stäuben gearbeitet wurde, ist in solchen Fällen ein Atemschutz zu tragen.
- Gegebenenfalls ist für Abschirmung zu sorgen.
- Jedes Mal beim Verlassen und Betreten des Labors müssen anhand eines entsprechenden Messgerätes die Hände und Schuhe auf Kontaminationen geprüft werden.

b. Überblick der verwendeten Messproben

Vermessen werden

- <u>Sekundäres Uranerz (Probe 1)</u>: Hierbei handelt es sich um sekundäres Uranerz. Der Fundort dieses Steins sind die Pryor Mountains, Wyoming, USA. Der gesamte Stein (1 bis 2 kg) hat eine Dosisleistung von 60 μSv/h, was vergleichsweise hoch ist. Enthalten ist Uran (Uran im natürlichen Verhältnis von ²³⁸U: 99,27 %, ²³⁵U: 0,72 % und ²³⁴U: 0,0055 %) ^[4].
- <u>Orangit (Probe 2)</u>: Orangit ist ein Thoriummineral und gehört der Familie der Thorite an. Chemisch gesehen ist der Thorit ein Silikat mit der Zusammensetzung ((Th,U)SiO₄) mit einer tetragonalen Kristallstruktur. Die Farbe des Steins ist orange bis braun. Dieser Stein, dessen Masse ca. 200 g beträgt, hat die geringste Dosisleistung

unserer drei Minerale. Sie liegt bei ca. 23 µSv/h. Gefunden wurde dieser Stein in Anatolien in der Türkei.

- <u>Pechblende (Probe 3)</u>: Pechblende (auch Uranpecherz oder Uraninit) ist unsere dritte Probe. Dieses Uranoxid besteht zu 88,15 % ^[5] aus Uran und ist daher sehr radioaktiv. Chemisch ist Pechblende Urandioxid mit der Formel (UO₂) und hat ein kubisches Kristallsystem (Sie kann auch in Spuren UO₃ oder U₃O₈ enthalten.). Die Dosisleistung liegt hier bei 40 µSv/h bei einer Masse von ca. 200 g. Der Fundort sind die Otawaminen in Südafrika.
- <u>Uranylnitrat (Probe 4)</u>: Die Probe 4 dient zur Veranschaulichung des radioaktiven Gleichgewichtes. Uranylnitrat ist ein äußerst toxisches Uransalz (R,S Sätze: R 26/28-33-51/53, S 20/21-45-61)^[6] mit der Formel (UO₂(NO₃)₂). Dieses Uranylnitrat ist eine Chemikalie der Firma Merck KGaA. Beim Arbeiten damit ist unbedingt darauf zu achten, dass der Stoff nicht inkorperiert wird. Es soll anhand dieser Probe das radioaktive Gleichgewicht demonstriert werden. Es wird somit ein Mal umkristallisiert und ein Mal nicht-umkristllisiert vermessen.

Zum Abschluss dieses Kapitels wird nun noch der Europiumstandard für die quantitative Analyse diskutiert. Vermessen wird ¹⁵²Eu einer Aktivität von 3156±24 Bq (gemäß Kalibrierschein). Benötigt wird dieses Nuklid, um die Ansprechwahrscheinlichkeiten der Detektoren zu bestimmen. Dies ist unbedingt nötig für eine quantitative Auswertung. Die Bestimmung läuft über die in Kapitel (II.c) dargestellte Formel Gl.(I). Wie bereits bekannt, ist die Ansprechwahrscheinlichkeit energieabhängig. Es werden also für so viele Energien wie möglich Ansprechwahrscheinlichkeiten bestimmt (Das hängt vom gemessenen Spektrum ab.) und diese dann näherungsweise für die quantitative Auswertung benutzen (z.B. durch Aufstellen eines geeigneten Graphen und Ansprechwahrscheinlichkeiten). ¹⁵²Eu Ablesen zeigt in der vielen Energiebereichen Peaks. Ein etwas vereinfachtes Zerfallsschema zeigt Abb. 7.

Abbildung 7: vereinfachtes Zerfallsschema von ¹⁵²Eu

c. Überblick der verwendeten Messgeräte

Nun noch ein paar Details zu den verwendeten Messgeräten: der Natriumiodid-Szintillationsdetektor (im Folgenden immer NaI-Detektor genannt) ist ein Handmessgerät der Marke Saic® GR 135. Dieser wird über einen Peak mit ¹³⁷Cs kalibiriert. Die Auswertung der Spektren findet am PC statt mit der Software LabViewTM 7 Express 2003.

Der verwendete Germanium-Lithium-Detektor (im Folgenden immer Ge(Li) genannt) ist ein standardisierter Halbleiterdetektor. Dieser wird über drei Punkte kalibriert: ¹³⁷Cs (662 keV), ⁶⁰Co (1173 und 1332 keV). Zu erwarten sind daher hier die genaueren Messergebnisse in jeder Hinsicht. Die verwendete Software heißt Maestro MCA Emulator 166.

d. Optimierung der Messergebnisse

Um die Repräsentierbarkeit und Vergleichbarkeit der Messergebnisse zu wahren, muss geklärt sein, welche Messbedingungen günstig und wieder verwertbar sind. Zerlegt man die Gesamtzählausbeute η in die einzelnen Faktoren, die sie beeinflussen, erhält man die vom Detektor detektierte Impulsrate I' durch $I' = A \cdot v \cdot \eta_D \cdot g(1-a)(1-s)(1+r)(1-t) + u$ Gl.(III). Dabei bedeuten A...Aktivität, v...Zahl der ausgesandten γ -Quanten pro Zerfall, η_D ...die innere Zählausbeute des Detektors, a...die Absorption der Strahlung im Fenster, s... die Selbstabsorption, r...die Rückstreuung, t...die Totzeit und u... der Untergrund. Bei Rechungen und Diskussionen sollen diese Faktoren alle unberücksichtigt bleiben. Sie müssen demnach beim Messen konstant gehalten werden. Wie bereits oben angesprochen, spielt der Geometriefaktor g eine Rolle. Einheitliche Geometrie bedeutet nun, dass die Präparate einheitlicher Masse in eine zylindrische Kapsel aus Plaste getan werden (Maße: d=1,65 cm, h=6 mm). Zu beachten ist noch, da wir unterschiedliche Materialien verwenden, die Selbstabsorption s. Da hier aber nur γ -Strahlung detektiert werden soll, gilt in fast allen praktischen Fällen s=0. Ich setze daher s stets als konstant. Zu beachten ist noch die Totzeit des Detektors. Während die Messelektronik ein analoges Signal digitalisiert und abspeichert, ist sie für weitere Signale unempfindlich. Es ist gut möglich, dass diese sog. Totzeit (engl.: dead time) einige bis viele Prozent der echten Zeit (engl.: real time) beträgt. Die Differenz aus Echtzeit und Totzeit nennt man Tatsächliche Zeit (engl.: life time). Die Totzeit soll auch vernachlässigbar und daher nie größer als 1 % sein. Herabgesetzt werden kann sie durch das Variieren des Abstands der Probe zum Detektor. Es hat sich herausgestellt, dass ein Abstand von ca. 1 cm dafür ausreichend ist. Die Kapsel wird also im Abstand von 1 cm zentriert auf den Detektor gestellt und so vermessen. Des Weiteren wird eine definierte Korngröße unserer Proben verwendet. Diese werden in einer Mühle gemahlen, im Mörser weiter zerkleinert und schließlich mit Sieben auf eine definierte Größe gebracht. Es wird so eine optimale Vergleichbarkeit erreicht. Interessant könnte noch der Untergrund sein. Da die Messungen aber stets im gleichen Raum und stets etwa im gleichen Abstand zur Wand durchgeführt werden, sollte auch der Untergrund ungefähr konstant sein. Es wird natürlich ein Spektrum des Untergrunds geben. Dieses wird dann bei den Interpretationen berücksichtigt. Es ist aber unnötig, dass in jedem Spektrum von jedem Peak der Untergrund abgezogen wird, da hier vergleichend gemessen wird. Für quantitative Untersuchungen spielt das auch keine Rolle, da natürlich auch im Spektrum des Europiums der Untergrund erheblich ist. Jedoch kann es gewiss sein, dass in manchen Spektren Peaks auftauchen, die ohne den Untergrund nicht da wären. Das wird bei den Interpretationen berücksichtigt. Die Messzeiten sind sicherlich für die Qualität der Spektren auch ausschlaggebend. Verwendet werden mit dem Ge(Li)-Detektor meistens Messzeiten von 7200 s (real time) und mit dem NaI-Detektor 5400 s (mehr ist von technischer Seite her leider nicht möglich). Es wird, um zu sehen, ob man in Praktikumsversuchen auch mit weniger Zeit auskommt, auch Messungen von 1800 s geben. Der Absorptionsfaktor a ist bei der zu messenden γ -Strahlung auch vernachlässigbar, da der Abstand zum Detektor stets klein ist. Wir setzen demnach auch a=0. Die Massen der Proben betragen stets 1 g. Ferner ist auch die Rückstreuung r unerheblich, da die Detektoren nach oben ausgerichtet sind. Die Rückstreuung von z.B. einer Tischplatte tritt so gar nicht auf.

e. Beschreibung der Versuche

Die Proben 1-4 werden zu 1 g eingewogen und dann in angesprochener Kapsel in definierter Korngröße vermessen. Dabei betragen die Messzeiten 1800, 5400 oder 7200 s. Der Abstand zum Detektor beträgt 1 cm.

Die "Extraktionen" werden unter nachfolgend genannten Bedingungen durchgeführt. Die Proben 1 bis 3 werden mit destilliertem Wasser, Salzsäure (halbkonzentriert, 13 %ig), Schwefelsäure (konzentriert, 96 %ig) und EDTA (Ethylendiamintetraessigsäure) (0,1 M) eluiert. Da nicht bekannt war, ob sich im Eluat überhaupt Aktivität nachweisen lässt, war es nötig, das zunächst etwas auszuprobieren. Es hat sich herausgestellt, dass es genügt, 1 g der jeweiligen Probe mit 1 ml Elutionsmittel 24 Stunden stehen zu lassen. Danach wird das Eluat mit einer Nutsche abgesaugt, in einer Saugflasche gesammelt und 1 ml des Eluats im Spektrometer vermessen.

Zur Identifizierung der Peaks in den Spektren werden wir folgende Vorgehensweise benutzen:

- a. Begrenzung der möglichen Nuklide durch Kenntnis der natürlichen Zerfallsreihen und deren Halbwertszeiten,
- b. Identifizierung der Peaks anhand deren Energie und Intensität mit Software, Datenbanken (hier z.B. [7]) und Tabellen (hier z.B. [8]).

Die Umkristallisation wurde in Diethylether (DEE) durchgeführt. Dabei wurden zunächst 10 ml Wasser in 100 ml DEE gelöst, indem beides im Schütteltrichter geschüttelt wurde. Anschließend wurden 3 g Uranylnitrat in der Etherphase im Schütteltrichter gelöst. Hierbei schied sich am unteren Ende des Trichters das gelöste Wasser mit den kurzlebigen Töchtern wieder ab und wurde abgelassen. Zurückblieb die Etherphase mit dem reinen Uranylnitrat. Der Ether wurde zügig abgedampft und 1 g des neu gewonnenen Uranylnitrats vermessen.

IV. Ergebnisse und Diskussion *a. Bestimmung der Ansprechwahrscheinlichkeiten*

In diesem ersten Teil der Auswertung sollen die Ansprechwahrscheinlichkeiten η beider Detektoren durch Auswertung der beiden ¹⁵²Eu-Spektren bestimmt werden. Bestimmt wird also gemäß Gl.(I) für jede Energie die entsprechende Ansprechwahrscheinlichkeit η . Es werden dann in einem Energie-Ansprechwahrscheinlichkeits-Diagramm die Werte gegeneinander aufgetragen. Die resultierende Kurve dient später zur Berechnung von Massen und Aktivitäten. Zunächst könnte man sich fragen, wie diese Kurven theoretisch aussehen müssten. Man betrachte dazu die Abbildung 5. Die Kurven sind also solche abfallenden Hyperbeläste. Die Ansprechwahrscheinlichkeit nimmt demnach mit steigender Energie ab. Auch zu erkennen ist, dass der NaI-Detektor eine höhere Ansprechwahrscheinlichkeit besitzt. Tabelle 3 zeigt zunächst die berechneten Ansprechwahrscheinlichkeiten η beider Detektoren mit den nötigen Messwerten und die Abbildungen 8 und 9 die γ -Spektren von ¹⁵²Eu.

Abbildung 9: γ -Spektrum von ¹⁵²Europium, 1800 s, NaI

Ge(Li), t=7200	S			NaI, t=5400 s			
Energie (keV)	counts/t	V	η	Energie (keV)	counts/t	V	η
39,42	23556	0,16	0,025916244	38,4	43447	0,16	0,047800266
121,67	25456	0,2924	0,015325099	125,5	28867	0,2924	0,0173786
244,68	3620	0,07616	0,008367046	246,8	4618	0,07616	0,010673761
344,29	10724	0,27	0,006991712	347,2	5698	0,27	0,003714918
411,34	779	0,02264	0,006056916	447,0	1204	0,02839	0,007465374
444,2	802	0,02839	0,004972783	686,1	596	0,00846	0,012401277
778,48	1789	0,1299	0,002436526	779,5	1002	0,1299	0,001445886
867,44	478	0,04176	0,00201492	962,8	712	0,1458	0,000859633
964,21	1275	0,1458	0,001539371				
1085,87	901	0,1029	0,001541345				
1212,39	124	0,01447	0,001508494				
1299,21	116	0,0176	0,001160208				

Tabelle 3: Ansprechwahrscheinlichkeiten beider Detektoren bei verschiedenen Energien¹

¹ In der Tabelle bedeutet das v die Zahl der ausgesandten Gammaquanten pro Zerfall.

Beim Betrachten der Tabelle 3 fällt auf, dass der NaI-Detektor weniger Peaks gemessen hat und deren Energiewerte auch deutlich mehr von den Literaturwerten abweichen, als die des Ge(Li). Dieses wurde in (II.b) bereits eingehend erläutert. Weiter fällt auf, dass beim Vergleich der Messwerte die Ansprechwahrscheinlichkeiten des NaI-Detektors, wie bereits vorhergesagt, deutlich größer sind, als jene des Ge(Li). Abbildung 10 zeigt nun die Ansprechwahrscheinlichkeits-Energie-Kurven.

Abbildung 10: Ansprechwahrscheinlichkeits-Energie-Diagramm beider Detektoren

b. Berechnung der quantitativen Zusammensetzungen

Um eine sinnvolle Auswertung der Messergebnisse zu führen, werden auch die quantitativen Zusammensetzungen der Proben benötigt. Es interessiert also zumindest, wie viel Uran oder Thorium in einem Uran- oder Thoriummineral enthalten ist. Auch kann so besser über Probe 4 diskutiert werden, bei der gesehen werden soll, in wie weit ein radioaktives Gleichgewicht eingestellt ist. Weiterhin kann man so sehen, wie viel Aktivität und Masse an Uran oder Thorium sich bei den Extraktionen eluieren ließ. Auch kann hierbei auch überprüft werden, wie gut stets gearbeitet wurde, denn das natürliche Verhältnis von ²³⁵U und ²³⁸U sollte immer nahezu erreicht werden können. In diesem Kapitel wird sich also zeigen, in wie weit eine quantitative Analyse mittels γ -Spektroskopie überhaupt möglich ist.

Die Berechnung erfolgt gemäß Gl.(II). Alle dazu nötigen Zahlenwerte werden in den Tabellen 4 (7200 s Messzeit) und 5 (1800 s Messzeit) auftauchen, so dass diese sich quasi selbst erklärt. Die Berechnung erfolgt nur für die Nuklide ²³⁵U, ²³⁸U und ²³²Th. Gewiss könnte man sämtliche Berechnungen für alle gefundenen Nuklide durchführen. Das ist aber nicht nötig und auch nicht sinnvoll, schließlich geht es um die Analyse von Uran- und Thoriummineralien. Es sei an dieser Stelle noch ein Mal darauf hingewiesen, dass die Berechnung von ²³⁸U über deren Tochter ²³⁴Th oder ²³⁴Pa läuft. Ebenso läuft die Berechnung von ²³²Th über deren Tochter ²²⁸Ac.

	Ge(Li)							
Probe/Nuklid	Energie(keV)	Counts/s	η	V	M (g/mol)	Aktivität (Bq)	Masse (g)	Anteil/1g(%)
Pechblende								
238 U/234 Th	92, 39	3,2165278	0,017523073	0,0257	238	7142,39599	0,574062254	57,40622538
235 U	185,81	2,9615278	0,012771872	0,54	235	429,4053781	0,005365562	0,536556167
232 Th/228 Ac	338,38	0,5302778	0,008695647	0,1201	232	507,7600257	0,091106466	9,110646606
Sekundāre Ura	nerze							
238 U/234 Th	92, 39	1,7997222	0,017523073	0,0257	238	3996, 336893	0,3212012	32,12012001
235 U	185,81	1,8411111	0,012771872	0,54	235	266,9510711	0,003335642	0,333564158
232 Th/228 Ac	338,38	0,1825	0,008695647	0,1201	232	174,7503074	0,031355133	3,135513264
Orangit								
238 U/234 Pa	616,01	0,0984722	0,00462181	0,02	238	1065, 299273	0,085622262	8,562226215
235 U/ 231 Pa	15,07	2,2775	0,029853599	0,078	235	978,0635774	0,012221227	1,222122663
232 Th/228 Ac	209,16	1,1808333	0,011966923	0,0455	232	2167,247173	0,388865253	38,88652533
	Nal							
Probe/Nuklid	Energie(keV)	Counts/s	η	V	M (g)mol)	Aktivität (Bq)	Masse (g)	Anteil M (%)
Pechhlende								
238 U/234 Th	92,3	5,3251852	0,028479435	0,0257	238	7275,623597	0,584770277	58,47702768
235 U	187,1	4,6283333	0,019434967	0,54	235	441,0086122	0,005510548	0,55105479
232 Tb/228 Ac	269,3	0,2972222	0,014773427	Q 0377	232	533,6526498	0,095752333	9,575233294
Sekundāre Ura	nerze							
238 U/214 Pb	243,5	3,4005556	0,016062503	0,074	238	2860,914832	0,229942896	22,99428957
235 U	188,8	4,2551852	0,01931919	0,54	235	407,8831681	0,005096635	0,509663457
232 Th/228 Ac	269, 34	0,2973611	0,014771526	Q 0377	232	533,970731	0,095809406	9,580940567
Orangit								
238 U/214 Pb	76	9,9959259	0,030966613	0,107	238	3016,793207	0,242471449	24,24714493
235 U	106	4,8107407	0,02670798		235	18012,37238	0.225070527	22,50705273
232 Tb/228 Ac	338,6	2,0172222	լԱՍ11842311	լ Ա1201	232	1418,320179	U,254486633	25,4486633

Tabelle 4: quantitative Zusammensetzung der Proben 1-3

	Ge(Li)							
Probe/Nuklid	Energie (keV)	Counts/s	η	V	M (g/mol)	Aktivität	Masse (g)	Anteil/1g (%)
Pechblende								
238 U/234 Th	92,39	3,166667	0,017523	0,0275	238	7031,678	0,565163	56,52
235 U	185,81	2,948889	0,012772	0,54	235	427,573	0,005343	0,53
232 Th/ 228 Ac	338,38	0,511111	0,008696	0,12	232	489,815	0,120622	12,06
sek. Uran								
238 U/234 Th	92,39	1,645556	0,017523	0,0275	238	3654,005	0,293687	29,37
235 U	185,81	1,988889	0,012772	0,54	235	288,374	0,003603	0,36
232 Th/ 228 Ac	269,34	0,298333	0,010247	0,0377	232	772,232	0,190170	19,02
Orangit								
238 U/234 Th	117,76	0,494444	0,015873	0,0315	238	988,8781	0,079480	7,95
235 U	93,38	4,213333	0,017451	0,025	235	9657,741	0,120677	12,07
232 Th/ 228 Ac	209,16	1,173889	0,011967	0,0455	232	2154,502	0,530569	53,06
	NaI							
Probe/Nuklid	Energie (keV)	Counts/s	η	V	M (g/mol)	Aktivität	Masse (g)	Anteil/1g (%)
Pechblende								
238 U/234 Th	97,5	15,80833	0,027778	0,25	238	2276,391	0,182962	18,13
235 U	187,9	6,496111	0,019380	0,54	235	620,723	0,007756	0,78
sek. Uran								
238 U/234 Th	77,1	5,791667	0,030783	0,107	238	1758,383	0,141328	14,13
235 U	188,4	3,338889	0,019380	0,54	235	319,602	0,003994	0,40
Orangit								
238 U/214 Pb	75,9	5,975556	0,030983	0,107	238	1802,455	0,144870	14,49
235 U	94,1	6,112222	0,028232	0,025	235	8659,925	0,108209	10,82
232 Th/ 228 Ac	338,8	1,843889	0,011835	0,1201	232	1297,277	0,319468	31,95

Tabelle 5: Quantitative Auswertung der Kurzzeitmessungen (1800 s)

Für die Halbwertszeiten wurden die Werte in Tabelle 1 benutzt.

c. Diskussion der Messergebnisse

In diesem Kapitel findet die Auswertung der Spektren und Tabellen statt. Es wird überprüft, welche Nuklide und wie viel davon in welchem Gestein gefunden werden konnten. Außerdem bleibt die Frage, welcher Zerfallsreihe sich die Nuklide zuordnen lassen. Weiter werden die Auswirkungen des radioaktiven Gleichgewichts beleuchtet, indem die Messergebnisse von Probe 4 den übrigen gegenüber gestellt werden.

Man bedenke noch, dass zur eindeutigen Interpretation der Untergrund zu beachten ist. Die Spektren und Tabellen des Untergrundes befinden sich im Anhang (A6 und A11).

i. <u>Die Probe 1</u>

Die qualitative Untersuchung von sekundärem Uran sollte ergeben, dass in diesem als Uranerz hauptsächlich Nuklide der Uran-Radium- und Actiniumzerfallsreihe nachweisbar sind. Zur Begründung dessen werden nachfolgend die beiden Spektren betrachtet. Die wichtigsten Peaks sind mit den entsprechenden Nukliden in den Spektren beschriftet. Die Zahlenwerte für Energie und Intensität findet man in den Messwerttabellen im Anhang (A1, A7).

Abbildung 11: γ -Spektrum von sekundären Uranerzen, t=7200 s, Ge(Li)

Abbildung 12: γ -Spektrum von sekundären Uranerzen, t=5400 s, NaI

Um zu sehen, dass die Nuklide der angesprochenen Zerfallsreihen überwiegen, betrachte man Tabelle 6.

Ge(Li)			NaI		
Nuklid	Zahl der	Zerfallsreihe	Nuklid	Zahl der	Zerfallsreihe
	Peaks			Peaks	
214 Pb	9	Uran-Radium	234 Pa	3	Uran-Radium
234 Pa	10	Uran-Radium	214 Pb	3	Uran-Radium
223 Ra	5	Actinium	234 Th	1	Uran-Radium
227 Th	4	Actinium	235 U	2	Actinium
210 Pb	1	Uran-Radium	212 Pb	1	Thorium
226 Ra	2	Uran-Radium	228 Ac	1	Thorium
235 U	4	Actinium	208 Tl	1	Actinium
234m Pa	1	Uran-Radium	214 Bi	4	Uran-Radium
210 Tl	1	Uran-Radium	40 K	1	/
208 Tl	2	Thorium			
211 Pb	2	Actinium			
212 Bi	1	Thorium			
214 Bi	21	Uran-Radium			
211 Bi	1	Actinium			
228 Ac	4	Thorium			
234 Th	1	Uran-Radium			
219 Rn	1	Actinium			
40 K	1	/			

Tabelle 6: Gefundene Nuklide in Probe 1

Mit dem Ge(Li) wurden viele, jedoch nicht alle, γ -aktive Nuklide der Uran-Radium-Zerfallsreihe gefunden (siehe Abbildung 2). Es ist deutlich die zahlenmäßige Überlegenheit der Peaks zu beobachten, die Nukliden der Uran-Radium- und Actiniumzerfallsreihe zuordenbar sind. Charakteristisch sind die vielen ²¹⁴Bi-, ²²³Ra- und ²²⁶Ra-Peaks. Zu diskutieren wäre noch, ob tatsächlich Nuklide wie ²¹⁹Rn oder ^{234m}Pa realistisch sind. Die Emissionswahrscheinlichkeiten bei den entsprechenden Energien sind mittelmäßig. Sie betragen für ²¹⁹Rn bei 401,78 keV ca. 6,6 % und für ^{234m}Pa bei einer Energie von 257,9 keV lediglich 0,057 % ². Die Intensität passt auch nur einigermaßen dazu, sodass nicht mit Sicherheit gesagt werden kann, ob die Nuklide tatsächlich γ -spektroskopisch mit den verwendeten Bedingungen nachweisbar sind.

Erwartungsgemäß handelt es sich auch quantitativ um ein Uranmineral, wie man Tabelle 4 entnehmen kann. Es gibt einen ²³⁸U-Massenanteil von 32,12 % mit dem Ge(Li) bzw. 22,99 % mit dem NaI-Detektor berechnet. Außerdem gibt es einen ²³⁵U-Massenanteil von 0,33 % bzw. 0,51 %. Damit sollte das natürliche Verhältnis von ²³⁸U und ²³⁵U nachweisbar sein. Dazu gibt Tabelle 7 Auskunft, diese enthält auch die Literaturwerte. Für Probe 1 trifft dies fast zu.

		Literaturwerte	Probe 1	Probe 2	Probe 3	Orangit in HCl	Pechblende in HCl
Ge(Li)	235 U	0,72 %	1,04 %	7,09 %	0,93 %	20,97 %	4,30 %
	238 U	99,27 %	98,96 %	92,91 %	99,07 %	79,03 %	95,70 %
NaI	235 U	0,72 %	1,21 %	48,14 %	0,87 %		3,50 %
	238 U	99,27 %	98,79 %	51,86 %	99,13 %	kein ²³⁵ U-Peak	96,50 %

Tabelle 7: Verhältnis von ²³⁵U zu ²³⁸U für die Proben 1-3 und die Eluate von Orangit sowie Pechblende in Salzsäure³

Die Werte sind aber nur innerhalb einer gewissen Genauigkeitsgrenze zu verwenden. Von Mess- und Rechenfehlern abgesehen, wird ²³⁴U ja nicht beachtet. Erschwerend kam zur Analyse hinzu, dass auch Nuklide der Thoriumzerfallsreihe nachgewiesen wurden, darunter ²¹²Bi, ²²⁸Ac und ²⁰⁸Tl.

² Die Zahlenwerte stammen aus [8] S.242 und 255.

³ Die Literaturwerte entstammen [4].

Damit ließ sich der Anteil an ²³²Th berechnen. Dieser liegt bei 3,13 % (Ge(Li)) bzw. 9,58 % (NaI). Es ist aber durchaus normal, dass in Gesteinen dieser Art Thorium und Uran nebeneinander vorliegen. Ferner wurden auch nicht alle γ -aktiven Nuklide der beiden Uranzerfallsreihen gefunden. Die Gründe dafür wurden oben eingehend erläutert. Außerdem kann es sein, dass die entsprechenden Peaks nicht intensiv genug waren, um sich vom Untergrund abzuheben.

Qualitativ und quantitativ unterscheiden sich die Ergebnisse beider Detektoren. Außerdem ermöglicht der Halbleiterdetektor, wie eingangs erwähnt, eine deutlich bessere Auflösung der Spektren, wodurch sich eine große Anzahl von Linien betrachten lässt, welche mit dem Szintillator nicht beobachtbar sind. Quantitativ ist mit dem Ge(Li) das natürliche Verhältnis der Urannuklide auch besser nachweisbar als mit dem NaI-Detektor. Bei zukünftigen Betrachtungen und Diskussionen wird daher auf die Nal-Spektren verzichtet. Zu finden sind die Spektren und Tabellen dennoch im Anhang (A7-A11). Um die Diskussion über Probe 1 abzuschließen, werden die Erkenntnisse noch mal zusammengefasst:

- Gefunden wurden überwiegend Nuklide, die genetisch von ²³⁸U oder ²³⁵U abstammen.
- Quantitativ enthält Probe 1 als Uranerz überwiegend Uran.
- Das natürliche Verhältnis der Urannuklide ist nachweisbar.

Somit wurden die gewünschten Ziele erreicht.

ii. <u>Die Probe 2</u>

Orangit sollte nun als Thoriummineral sowohl qualitativ als auch quantitativ als ein solches gedeutet werden können. Im Spektrum müssten dazu die Peaks von Nukliden der Thoriumzerfallsreihe überwiegen. Quantitativ muss der Orangit auch im Wesentlichen ²³²Th enthalten. Uran sollte hier Peaks geringer Intensität zeigen. Um dies bestätigt zu sehen, schaue man zunächst auf Abbildung 13. Erneut sind die intensivsten Peaks beschriftet.

Tabelle 8 informiert über die gefundenen Nuklide im Orangit.

Ge(Li)			NaI			
Nuklid	Zahl der	Zerfallsreihe	Nuklid	Zahl der	Zerfallsreihe	
	Peaks			Peaks		
234 Pa	5	Uran-Radium	234 Pa	2	Uran-Radium	
228 Th	2	Thorium	212 Pb	1	Thorium	
214 Pb	7	Uran-Radium	227 Th	1	Thorium	
234 Th	1	Uran-Radium	228 Ac	2	Thorium	
212 Bi	3	Thorium	235 U	1	Actinium	
227 Th	2	Actinium	208 Tl	1	Thorium	
228 Ac	16	Thorium	214 Bi	5	Uran-Radium	
212 Pb	1	Thorium	40 K	1	/	
208 Tl	5	Thorium				
214 Bi	2	Uran-Radium				
224 Ra	2	Thorium				
223 Ra	3	Actinium				
231 Pa	2	Actinium				
40 K	1	/				

Tabelle 8: gefundene Nuklide im Orangit

Erwartungsgemäß überwiegen die Peaks von Nukliden der Thoriumzerfallsreihe. Charakteristikum ist der sehr intensive ²¹²Pb-Peak bei ca. 238 keV und die zahlreichen Peaks von ²²⁸Ac. ²²⁸Ac ist die direkte γ -aktive Tochter von ²³²Th. Den Nukliden der Thoriumzerfallsreihe stehen Nuklide wie ²¹⁴Pb, ²¹⁴Bi, ²³⁴Pa oder ²²⁷Th gegenüber, die aus den Uranzerfallsreihen stammen. Mit dem Ge(Li) wurde ein Massenanteil an Uran (238 und 235) von 9,78 % und ein Massenanteil an ²³²Th von 38,88 % berechnet. Somit kann auch hier das Ziel erreicht werden. Auch hier ist das natürliche Verhältnis der Urannuklide fast erreicht. Aufgrund dieser qualitativen und quantitativen Ergebnisse ist es somit möglich, sekundäres Uranerz und Orangit (Thoriummineral) eindeutig voneinander zu unterscheiden. Auch das wurde als Ziel formuliert.

iii. <u>Die Probe 3</u>

Die Pechblende hat von unseren drei Proben die höchste Dosisleistung, quantitativ haben wir hier also die höchsten Werte zu erwarten. Auch hier sollten, wie bei sekundärem Uran, die Peaks der Nuklide der Uran-Radiumund Actinium-Zerfallsreihen im Vordergrund stehen. Abbildung 14 zeigt das Spektrum von Pechblende.

Abbildung 14: γ -Spektrum von Pechblende, t=7200 s, Ge(Li)

Zu finden sind folglich auch hier überwiegend Nuklide der beiden Uranzerfallsreihen. Das Spektrum ähnelt qualitativ dem von sekundärem Uran. Eine genaue Auflistung der Peaks findet man im Anhang. Dort zu sehen ist, dass erneut die oben bereits genannten Charakteristika auftauchen: viele Peaks von ²¹⁴Bi, ²²⁶Ra, ²²³Ra, ²³⁴Pa, ²¹⁴Pb; alles Nuklide der Uranzerfallsreihen. Detektierbar sind aber auch ²²⁸Ac oder ²¹²Pb, Nuklide der Thoriumzerfallsreihe. Dazu ist aber zu sagen, dass deren Intensität nicht mit denen der übrigen konkurriert. Qualitativ liegt demnach auch hier ein Uranmineral vor. Quantitativ lässt sich das ebenfalls bestätigen. Man kann man hier zwei Dinge sehen. Zum einen enthält Pechblende zu einem großen Anteil (57,94 % bzw. 58,48 %) Uran und nur wenig Thorium (9,11% bzw. 9,58 %). Zum anderen sind diese Anteile, aufgrund der höheren Dosisleistung der Pechblende, größer, als bei sekundärem Uran. Der Urananteil ist bei Probe 1 beinahe bloß halb so groß, als bei Probe 3, der Pechblende. Dieser hohe Urananteil sollte eigentlich etwas verwundern, lässt sich aber durch [5] bestätigen, wonach Pechblende sogar zu 88,15 % Uran enthält. Tabelle 9 zeigt die gefundenen Nuklide in der Pechblende.

Ge(Li)			NaI		
Nuklid	Zahl der	Zerfallsreihe	Nuklid	Zahl der	Zerfallsreihe
	Peaks			Peaks	
214 Pb	9	Uran-Radium	234 Pa	3	Uran-Radium
234 Pa	7	Uran-Radium	210 Pb	1	Uran-Radium
210 Pb	1	Uran-Radium	235 U	2	Actinium
234 Th	2	Uran-Radium	212 Pb	2	Thorium
226 Ra	2	Uran-Radium	234 Th	1	Uran-Radium
235 U	4	Actinium	228 Ac	1	Thorium
227 Th	5	Actinium	208 Tl	1	Actinium
228 Ac	7	Thorium	214 Bi	5	Uran-Radium
208 Tl	1	Thorium	40 K	1	/
214 Bi	17	Uran-Radium			
211 Pb	2	Actinium			
211 Bi	2	Actinium			
223 Ra	1	Actinium			
234m Pa	1	Uran-Radium			
219 Rn	1	Actinium			
212 Pb	1	Thorium			
40 K	1	1			

Tabelle 9: gefundene Nuklide in Pechblende

iv. <u>Die Probe 4</u>

Abschließend werden die Auswirkungen des radioaktiven Gleichgewichts an Uranylnitrat demonstriert. Da unsere Proben 1 bis 3 vermutlich schon sehr alt sind, ist klar, dass sich bei ihnen ein radioaktives Gleichgewicht längst eingestellt hat. Man kann dies am Intensitätsverhältnis der Peaks deutlich beobachten. Das Spektrum des nicht-umkristallisierten Uranylnitrats lässt durch seine Peaks folg. Nuklide bestimmen: ²¹⁴Pb, ²³⁴Pa, ²³⁴Th, ²³⁵U, ²¹⁴Bi, ²⁰⁸Tl und ^{234m}Pa. Es ist somit klar, dass hier kein reines Uranylnitrat vorliegt. Ein radioaktives Gleichgewicht hat sich jedoch noch nicht eingestellt. Wie eingangs erwähnt, findet die Einstellung des Gleichgewichts der gesamten Zerfallsreihe nach ca. sieben Halbwertszeiten der langlebigsten Tochter statt. Das ist bei der Uran-Radium-Reihe ²³⁴U mit einer Halbwertszeit von 2,7 · 10⁵a, bei der

Actinium-Reihe ²³¹Pa mit einer Halbwertszeit von 3,26 · 10⁴ a und bei der Thorium-Reihe ²²⁸Ra mit einer Halbwertszeit von 5,75 a. Es ist daher kaum möglich, dass sich in irgendeiner Form dort ein Gleichgewicht eingestellt haben könnte. Mit einem Blick auf das Spektrum des umkristallisierten Uranylnitrats wird deutlich, dass hier keine Tochternuklide mehr auftauchen. Lediglich ²³⁴Pa und ²³⁴Th waren bereits nach kurzer Messzeit im Spektrum zu sehen. Möglicherweise war die Zeit zwischen Umkristallisation und Messung schon zu lang, so dass sich die Töchter sehr rasch nachgebildet haben. Es überwiegen hier aber eindeutig die Peaks von ²³⁵U. Auch hier lassen bereits die Intensitäten der Peaks verlauten, dass kein radioaktives Gleichgewicht eingestellt ist, was niemanden wundert. Die Spektren und Tabellen von Probe 4 befinden sich im Anhang (A4, A5 und A10).

v. <u>Die "Extraktionen" mit Wasser</u>

Diskutiert werden nun die Spektren der "Extraktionen". Dabei wird sich auf eine Auswahl der Spektren beschränkt und mit Wasser begonnen.

Man betrachte dazu zunächst die MWT im Anhang (A24 und A25). In denen geht es um die "Extraktion" von Orangit mit Wasser. Die Zahl der gefundenen Peaks ist gering und dabei ist keiner der Peaks wirklich überzeugend. Dazu brauchen auch keine Spektren betrachtet werden. Hier ist klar: mit Wasser kann über 24 h nichts eluiert werden. Das sekundäre Uran wurde hingegen, da mit Orangit nichts eluiert wurde, mit Wasser nicht 24 h, sondern 96 h stehen gelassen. Das Resultat ist im Anhang in den MWT (A16 und A17) sichtbar. Zu finden sind hier Peaks von ²³⁴Pa, ²¹⁴Bi und ²²⁸Ac in beiden Spektren. Diese heben sich auch einigermaßen vom Untergrund ab. Daraus kann man erkennen, dass sich mit Wasser prinzipiell wenig bis gar nichts eluieren lässt. Das ist aber auch klar, da keines der Metalle oder Metalloxide in Wasser löslich ist. Die drei gefundenen Nuklide könnten auch von einer unsauberen Filtration herrühren.

vi. <u>Die "Extraktionen" mit Salzsäure</u>

Mit Salzsäure ließ sich nun einiges mehr "extrahieren". Ein Indiz dafür war bereits, dass die Eluate grün gefärbt waren. Die Pechblende in Salzsäure wird zuerst diskutiert. Man schaue dazu auf die MWT A28 und A29. Dabei wurden folg. Nuklide sicher gefunden: ²³⁴Pa, ²¹⁰Pb, ²¹²Pb, ²¹⁴Pb, ²³⁵U, ^{226/223}Ra, ²²⁸Ac, ²²⁷Th, ²⁰⁸Tl, ²³⁴Th und ²¹⁴Bi (siehe Spektren). Nur zwei davon sind Nuklide der Thoriumzerfallsreihe. Zu betrachten sind jetzt die chemischen Reaktionen, mit denen man die Versuchsergebnisse erklären kann. Diskutiert werden erst Blei, Bismut, Thallium und Radium, weil diese keine Actinoide sind, und begonnen wird mit Blei. PbO₂ fungiert bei der Reaktion mit Salzsäure als Oxidationsmittel. Es entstehen Chlorgas und Blei(II)-chlorid: PbO₂ + 4HCl \rightarrow PbCl₂ + 2H₂O + Cl₂. Dieses ist allerdings schwerlöslich. Wahrscheinlicher ist daher die Komplexbildung. Befinden sich die Pb²⁺-Ionen in Lösung, können auch Komplexe, die Chloroplumbate(II), entstehen ([PbCl₃]⁻ oder [PbCl₄]²⁻)⁴.

⁴ aus [15] S. 983

Bismut tritt überwiegend in der Oxidationsstufe III auf. Möglich sind also folg. Reaktionen: Bi₂O₃ + 6HCl \rightarrow 2BiCl₃ + 3H₂O (im Sauren löslich) oder eine Komplexbildungsreaktion mit Bi³⁺: Bi³⁺ + 4Cl⁻ \rightarrow [BiCl₄]^{- 5}. Der entstandene Komplex heißt Tetrachlorobismutat(III). Deswegen ist Bismut detektierbar.

Ich widme mich jetzt dem Thallium. Beständig sind nur Tl(I)-Verbindungen. Leider ist aber TlCl auch schwerlöslich, sodass dieses ebenfalls als Feststoff zurückbleibt. Vermutlich stammt der ²⁰⁸Tl-Peak vom Untergrund.

Es bleibt, Radium zu diskutieren. Radium ähnelt in seinen Eigenschaften stark dem Barium. Daher ist folg. Reaktion möglich: RaO + 2HCl \rightarrow RaCl₂ + H₂O. RaCl₂ ist gut in Wasser löslich, daher können wir auch die Radium-Peaks im Spektrum sehen. Generell lässt sich für ein Actinoid (An), in unserem Fall U und Pa, folg. Reaktion formulieren: $AnO_m + 2mHCl \rightarrow AnCl_n + mH2O$ (wobei n=2m). So reagiert beispielsweise Pechblende (UO₂) mit Salzsäure: UO₂ + 4HCl → UCl₄ + 2H₂O. Dieses Uran(IV)-chlorid ist schwerlöslich, man kann wegen dieser Verbindung Uran nicht im γ -Spektrum sehen. Außerdem formt Uran, so wie andere Actinoide auch, sog. Uranyl-Kationen $UO_2^{2+}(AnO_2^{2+})$. Es entsteht durch Reaktion von UO₃, das ebenfalls in Pechblende enthalten sein UO₂²⁺ bilden Säuren. leicht kann. mit Komplexe mit Chlorid: $UO_2^{2+} + 4Cl^- \rightarrow [UO_2Cl_4]^{2-}$. Andere Komplexbildungen sind z.B. durch $UO_2^{2+} + Cl^- \rightarrow UO_2Cl^+$ möglich. Actinoidhalogenide, die nicht schwer löslich sind (alle außer Oxidationsstufen III und IV), hydrolysieren mit Wasser. Wahrscheinlich sind noch mehr Reaktionen möglich, die hier nicht alle diskutiert werden sollen. Zu erwähnen ist noch, dass viele dieser Elemente auch in anderen Oxidationsstufen beständig sind (so z.B. Uran oder Bismut in + V, VI). Diese sind durch den vorhandenen Luftsauerstoff auch leicht bildbar. Es soll aber bei dieser Diskussion belassen werden. Es wurden, so denke ich, plausible Gründe genannt, warum manche Nuklide sichtbar und andere nicht sichtbar sind. Abbildung 15 zeigt das Spektrum des Eluats.

Abbildung 15: γ -Spektrum der "Extraktion" von Pechblende mit Salzsäure, t=7200 s, Ge(Li)

⁵ aus [15] S. 825

Es geht weiter mit Orangit (A20, A21). Dort wurden folg. Nuklide identifiziert: ²¹⁴Pb, ²²⁸Ac, ²¹²Pb, ²³⁴Pa, ²³¹Pa, ²³⁴Th, ²⁰⁸Tl, ²²³Ra, ²²⁴Ra und ²²⁷Th (Abbildung 17). Zur Diskussion dieser Nuklide verweise ich auf die Diskussion der Pechblende eben. Dabei ist die differierende Zusammensetzung des Orangits zu beachten: ((Th,U)SiO₄). Auch aus dem Silikat lassen sich die Ionen lösen. Das einzige, das unschlüssig ist, ist das Thallium, da Thallium(I)-chlorid zwar schwerlöslich ist, aber detektiert wird. Möglicherweise befindet sich in der Lösung auch dreiwertiges Thallium, das rasch reduziert wird. Vermutlich wurde jenes detektiert. Es ist noch festzustellen, dass die oben angesprochenen Charakteristika der Spektren bei den "Extraktionen" erhalten bleiben.

vii. Die "Extraktionen" mit Schwefelsäure

Tendenziell lässt sich vorab sagen, dass mit Schwefelsäure weniger eluiert werden kann als mit Salzsäure. Das liegt an der Schwerlöslichkeit vieler Sulfate, wie z.B. Radium- oder Bleisulfat. Es wird nachfolgend mit der Diskussion der Pechblende in Schwefelsäure (A30, A31) begonnen. Dabei wurden folg. Nuklide detektiert: ²³⁴Pa, ²³⁴Th, ²¹⁴Pb, ²³⁵U und ²¹⁴Bi. Das sind also wesentlich weniger Nuklide als bei der "Extraktion" von Pechblende mit Salzsäure. Das bedeutet daher, es sind mehr schwerlösliche Salze gebildet worden. Dies wird nun ein wenig diskutiert. Es fehlen ²²⁸Ac, ^{226/223}Ra und ²⁰⁸Tl. Zu sagen sind jetzt doch ein paar Worte mehr zum Actinium als oben. In seinen Verbindungen tritt es ausschließlich dreiwertig auf. Actiniumoxid in seiner dreiwertigen Form kann also mit Schwefelsäure reagieren: Ac_2O_3 + H_2SO_4 \rightarrow $Ac_2(SO_4)_3 + H_2O^{[18]}$. Nun ist klar, warum kein Peak des ²²⁸Ac auftaucht, denn dieses Salz ist schwerlöslich (auch in Schwefelsäure). Analog dem Actinium bildet sich durch Reaktion von Radium
oxid auch Radium
sulfat: RaO + $\rm H_2SO_4$ \rightarrow RaSO₄ + H₂O. Dieses Sulfat ist noch schwerlöslicher als entsprechendes Bariumanalogon. Daher ist nun auch klar, warum es nicht im Spektrum zu finden ist. Bleibt die Frage nach Thallium. Thalliumsulfat bildet sich analog der Reaktionen oben, es ist allerdings gut löslich in Wasser. Man sollte es daher im Spektrum sehen können. Möglicherweise wurde nicht genug Thallium gelöst, um es vom Untergrund unterscheiden zu können. Jetzt geht es noch um die Nuklide, die zu sehen sind. Blei und Bismut bilden, in Schwefelsäure lösliche, Salze wie PbSO₄, Pb(HSO₄)₂, Bi₂(SO₄)₃·xH₂O und Bi₂O(SO₄)₂·H₂O⁶. Dies erklärt, warum wir Blei und Bismut im Spektrum finden. Zu diskutieren bleiben noch die drei Actinoide ²³⁴Pa, ²³⁴Th und ²³⁵U übrig. Dazu wäre zu sagen, dass drei- und vierwertige Actinoide An³⁺ und An⁴⁺ wasserlösliche Sulfate bilden⁷, womit klar wäre, warum wir die drei Nuklide im Spektrum sehen. Außerdem sind lösliche Sulfatokomplexe bekannt. Beim Orangit (A22, A23) sind deutlich weniger Peaks zu finden als bei der Pechblende. Diese Nuklide ließen sich bestimmen: ²¹⁴Pb, ²¹²Pb, ²²⁸Th, ²¹²Bi, ²²⁸Ac und ²¹⁴Bi. Das sind also vier Nuklide der Thoriumzerfallsreihe und spricht für den Orangit. Die Peaks der beiden Nuklide der Uran-Radium-Zerfallsreihe sind auch geringer Intensität, sodass hier qualitativ alles für ein Thoriummineral spricht. Nachfolgend findet man die Spektren der diskutierten Extrakte.

Abbildung 17: γ -Spektrum der "Extraktion" von Pechblende mit Schwefelsäure, t=7200 s, Ge(Li)

Abbildung 18: γ -Spektrum der "Extraktion" von Orangit mit Schwefelsäure, t=7200 s, Ge(Li)

⁶ aus [15] S. 826

⁷ aus [15] S. 1820 f.

viii. Die "Extraktionen" mit EDTA

Abbildung 19: Ethylendiammintetraacetat (EDTA⁻) Abschließend beschäftige ich mich mit Komplexbildungsreaktionen durch EDTA. Ethylendiamintetraessigsäure bildet besonders stabile 1:1-Komplexe mit Kationen einer Ladungszahl von mind. +2. Abbildung 19 zeigt den sechszähnigen Liganden als Kation. Wie man sieht, kann das Metallion oktaedrisch vom EDTA-Molekül umhüllt werden. Es kann sowohl mit den freien Elektronenpaaren des Stickstoffs als auch über die vier Carboxylgruppen Kationen an sich binden. Durch diese 6-fach-Bindung entstehen sehr stabile Komplexe. Man

bei der z.B. in der analytischen Chemie zur benutzt daher EDTA komplexometrischen Titration von Metallionen oder zur Entgiftung von Dabei wird die Wasserlöslichkeit der Komplexe Schwermetall-Ionen. ausgenutzt. Z.B. wird der Blei-EDTA-Komplex über den Urin ausgeschieden. Nun bleibt die Frage, inwiefern diese Nuklide sich von EDTA komplexieren lassen. Zuerst geht es um sekundäres Uran. Deren Elution mit EDTA zeigt folg. Ergebnis: ²¹⁰Pb, ²¹⁴Pb, ²³⁵U, ²³⁴Pa, ²²⁸Ac, ²⁰⁸Tl, ²¹²Bi und ²¹⁴Bi. Zu diskutieren sind also wieder Blei, Thallium, Bismut und einige Actinoide. Blei bildet mit EDTA stabile Komplexe: $Pb^{2+} + EDTA^{4-} \rightarrow [Pb(EDTA)]^{2-}$. Demnach ist auch geklärt, warum Blei im Spektrum sichtbar ist. Bismut verhält sich ähnlich. Dazu ist nicht viel mehr zu sagen als eben. EDTA bildet auch mit Bismut einen stabilen, wasserlöslichen Komplexe: Bi³⁺ + EDTA^{4−} → [Bi(EDTA)]⁻. Was macht nun aber Thallium? Man findet in der Literatur die Information, dass Thallium mit EDTA Komplexe bildet. Das wurde 1952 erstmals von Bottari und Anderegg (ETHZ) beobachtet. Dies bleibt so stehen. Es bleibt über die Actinoide ²³⁴Pa, ²²⁸Ac und ²³⁵U zu diskutieren. Dazu ist zu sagen, dass dreiund vierwertige Actinoide durchaus mit EDTA stabile Komplexe bilden. Auch möglich sind EDTA-Komplexe mit $UO_2^{2+}(AnO_2^{2+})$, denn auch diese sind zweiwertige Ionen. Schließlich ließen sich auch mit EDTA fast alle Elemente aus den Proben lösen. Lediglich Thorium und Radium ließen sich nicht identifizieren. Es sind aber auch Komplexe von Thorium und Radium mit EDTA bekannt. Wahrscheinlich waren die Intensitäten der Peaks einfach nicht ausreichend, um die entsprechenden Nuklide zu detektieren. Es lässt sich auch hier wieder feststellen, dass von Probe 1 als Uranerz hauptsächlich Nuklide der Uran-Radium-Zerfallsreihe gefunden werden. Bevor die Spektren gezeigt werden, ist noch offen, welche Nuklide bei der "Extraktion" von Orangit mit EDTA gefunden wurden: ²²⁷Th, ²¹²Pb, ²²⁸Ac, ²¹⁴Pb und ²¹⁴Bi. Diese sind wieder überwiegend Nuklide, die der Thoriumzerfallsreihe angehörig sind. Demnach kann man auch hier wieder qualitativ ohne Probleme feststellen, ob es sich um ein Thorium- oder Uranmineral handelt. Die EDTA-Komplexe der entsprechenden Elemente wurden eben schon diskutiert. Wir verweisen wiederum darauf. Die Abbildungen 20 und 21 zeigen die beiden Spektren. Die gefundenen Nuklide sind wie immer im Spektrum markiert.

Abbildung 20: γ -Spektrum der "Extraktion" von sekundärem Uranerz mit EDTA, t=7200 s, Ge(Li)

Abbildung 21: γ -Spektrum der "Extraktion" von Orangit mit EDTA, t=7200 s, Ge(Li)

ix. Zusammenfassung der "Extraktionen"

Um erneut eine Überprüfung der Messergebnisse zu bekommen, wurde nach der Elution die getrocknete Probe noch mal vermessen. Es sollte also möglich sein, die Intensitäten der Peaks der Elution und der getrockneten Probe nach der Elution aufzusummieren und schließlich wieder die Intensität der Peaks der unbehandelten Probe zu bekommen (mit einer gewissen Abweichung). In Tabelle 8 wird das stichprobenartig für einige "Extraktionen" mit mehr oder minder gutem Ergebnis durchgeführt (Spektren und Tabellen sind im Anhang).

Ich fasse die Ergebnisse dieses Kapitel jetzt noch mal zusammen:

- Mit den Elutionsmitteln Salzsäure, Schwefelsäure und EDTA ließen sich eine Reihe von Nukliden komplexieren bzw. lösen.
- Mit Wasser ließ sich wenig bis gar nichts eluieren.
- Qualitativ und quantitativ (an zwei Beispielen durchgeführt) kann man auch an den Spektren der Elutionen sehen, ob ein Uran- oder Thoriummineral eluiert wurde.

- Es konnten bestimmte schwerlösliche Sulfate/ Chloride (z.B. RaSO₄, UCl₄) in den Spektren der Eluate nicht gefunden werden, daher war die Verwendung verschiedener Elutionsmittel sinnvoll.
- Die zugrunde liegenden chemischen Reaktionen erklären bis auf wenige Ausnahmen die Messergebnisse.

Probe/ Elutionsmittel	Ge(Li) NaI	Peak (keV) (1)	Intensität/ Elution (2)	Intensität/ nach Elution (3)	Summe 2+3 (4)	Intensität/ unbehandelt (5)	Differenz 4-5
3 / Salzsäure	Ge(Li)	46,33 163,12	2589 775	7226 4409	9815 5189	8240 5165	1575 24
	NaI	46,3 240,7	5748 5204	25068 25035	30816 30239	28763 31745	2053 1506
2/ Salzsäure	Ge(Li)	238,76 338,38	7384 1412	65947 13427	73331 14839	74519 14751	1188 88
	NaI	239,2 341,1	7991 2819	37049 9271	45040 12090	38400 10893	6640 1197
3/ Schwefelsäure	Ge(Li)	63,11 185,81	560 578	12406 20598	12966 21176	12621 21323	345 147
	NaI	75,4 350,7	10517 2106	60012 25805	70529 27911	66756 33696	3773 5785
1/ Schwefelsäure	Ge(Li)	63,11 185,84	828 598	4508 9504	5336 10102	6887 13256	1551 3154
	NaI	76,5 602	9859 634	65535 12493	75394 13127	53978 3859	21416 9268

• Die Peaks vor und nach der Elution lassen sich begrenzt gegeneinander aufrechnen (s. Tabelle 8).

Tabelle 10: Diverse Rechnungen

d. Betrachtung möglicher Fehler

Die größte Fehlerquelle beim Messen der Proben 1-4 war wohl das Messen selbst. 1 g der Probe wurde in die Kapsel gefüllt und vermessen. Hier sind die systematischen Fehler der Waage und der Detektoren zu beachten, der gerade bei dem Nal-Detektor nicht unerheblich sein dürfte. Schon bei den Energien gibt es erhebliche Abweichungen der Werte vom Literaturwert. Das hat schon das Zuordnen der Peaks erschwert. Der Ge(Li) lieferte aber stets zuverlässige und schlüssige Messergebnisse, die beim Zuordnen der Peaks des Nal-Detektors hilfreich waren. Vermutlich liegen diese Ungenauigkeiten an der Ein-Punkt-Kalibrierung des Nal-Detektors mit ¹³⁷Cs. Dieses Nuklid zeigt lediglich bei 32 und 662 keV Peaks. Da kann es schon zu Ungenauigkeiten kommen. Um hierfür ein Beispiel zu nennen, wähle ich den ⁴⁰K-Peak, der lt. Literaturangabe bei 1460,75 keV liegt. Standardmäßig hatte der Nal-Detektor diesen Peak bei ca. 1451 keV. Der Ge(Li) hingegen wird in drei Punkten kalibriert und ist damit von Hause aus genauer. Außerdem ermöglicht der Halbleiterdetektor, wie eingangs erwähnt, eine deutlich bessere Auflösung der Spektren, wodurch sich eine riesige Anzahl von Linien betrachten lässt, welche mit dem Szintillator nicht beobachtbar sind. Ferner zeigt unsere quantitative Auswertung der Proben, dass der Ge(Li) beim Zählen der Counts signifikant genauer arbeitet. Wir erreichen mit dem Ge(Li) fast immer ein relativ gutes Verhältnis der Urannuklide, anders als mit dem NaI-Detektor (siehe Tabelle 7). Woran dies liegt, ist unklar. Zu erwähnen ist aber noch, dass der Nal-Detektor bereits beim Messen des Untergrundes eine Totzeit von 6 % anzeigte. Diese erhöhte sich beim Vermessen der Proben zwar nicht wesentlich (um max. 1 %), seltsam ist es aber doch. Im Vergleich dazu hatte der Ge(Li) bei der Untergrundmessung eine Totzeit von 0,18 %. Beim Messen selbst erreichten wir eine maximale Totzeit von 1,16 % bei der Pechblende. Ich denke, dies ist im Rahmen des Vertretbaren.

Weiter kann beim Zuordnen der Peaks auch einiges schief gehen. Wie bereits angesprochen, misst der NaI-Detektor Energiewerte, die von den Literaturwerten abweichen. Überdies gab es Peaks, die trotz Software und Tabellen nicht bzw. nur halbwegs überzeugend zugeordnet werden konnten. Das sind diese Peaks, die in den MWT mit Fragezeichen versehen wurden. Dabei kann es natürlich auch sein, dass Peaks einem Nuklid zugeordnet werden, denen sie in Wirklichkeit nicht entsprechen würden.

Bei den "Extraktionen" und Rechnungen kommen noch folg. Fehler hinzu:

- systematische Fehler von Waage und Pipette,
- Ablesefehler beim Wiegen und Pipettieren,
- systematische- und Rundungsfehler von Taschenrechner und PC.

Ich war beim Arbeiten stets bemüht, diese Fehler so klein wie möglich zu halten. Zugleich wurde durch das Schaffen einer einheitlichen Geometrie und definierten Korngröße der Fehler beim Messen minimiert. Wie bereits in (II.c) diskutiert, sind Faktoren wie Selbstabsorption oder Rückstreuung zu vernachlässigen. Zum einen ist trotz der hohen Ordnungszahl des Urans und der anderen Elemente, die in den Zerfallsreihen auftauchen, die Selbstabsorption zu vernachlässigen, da wir γ -Strahlung detektieren. Andererseits ist die Rückstreuung unerheblich, da die Detektoren nach oben ausgerichtet sind. Die Rückstreuung von z.B. einer Tischplatte tritt so gar nicht auf.

Insgesamt sind die auftretenden Messfehler, so denke ich, im Rahmen. Von der Verwendung eines NaI-Detektors zum nochmaligen Durchführen der Versuche würde ich abraten. Qualitativ lassen sich zwar die Auswertungen des Ge(Li) bestätigen, wobei das Zuordnen der Peaks deutlich schwerer fällt, rein quantitativ sind die Messwerte nur begrenzt verwertbar.

e. Zusammenfassung

Die in (I.b) formulierten Ziele sind im Wesentlichen erreicht worden. Wir erhalten aussagekräftige Spektren, die schnell vermuten lassen, was für ein Mineral untersucht wurde. Dieser Teil ließ sich auch mit beiden Detektoren gut bewältigen. Es ist daher festzuhalten, dass unter Beachtung der Simplizität der Anwendung eines γ -Spektrometers und der Geschwindigkeit des Verfahrens mit der zumindest qualitative Aussagen gut getroffen werden können, vieles für dieses Verfahren spricht. Mit entsprechender Vorbereitung können auch quantitativ gute Ergebnisse erzielt werden. Hier hat aber eindeutig der Ge(Li) die Nase vorn. Er liefert die besseren Messwerte. Geometrie, Abstand zum Detektor und definierte Korngröße waren schnell so gefunden, dass solche Faktoren wie Selbstabsorption, Rückstreuung und Totzeit minimiert werden konnten. Außerdem konnte so die Vergleichbarkeit der Messungen erhöht werden.

Die Elutionen waren nach meiner Auffassung auch ein voller Erfolg. Mit jedem Elutionsmittel konnten verschiedene Nuklide detektiert werden, ein Mal mehr und ein Mal weniger. Dabei gehorchten die Messergebnisse meist den zugrunde liegenden chemischen Reaktionen. Es hat sich herausgestellt, dass eine Elutionszeit von 24 h ausreicht. Dabei wurde 1 g der Probe in 1 ml Elutionsmittel gelöst.

Aus Gesichtspunkten des Strahlenschutzes muss die Sicherheitslatte bei Schülerversuchen ziemlich weit oben liegen. Ein wesentliches Problem dabei ist, dass ich hier mit radioaktiven Stäuben gearbeitet habe. Das kommt für Schüler/-innen nicht in Frage. Hier müssten also die zu vermessenden Kapseln vorbereitet werden.

Im Anhang finden sich die Spektren von Kurzzeitmessungen. Durchgeführt worden sind Kurzzeitmessungen der Proben 1-3 (A68-A79) und einiger "Extraktionen" (A56-A67) mit einer Messzeit von 1800 s (real time). Für qualitative Untersuchungen ist es ausreichend, 1800 s lang zu messen (s. Spektren). Für quantitative Untersuchungen ist dies nicht zu empfehlen, wie Tabelle 3 zeigt. Einer einigermaßen genauen Analyse tun die verkürzten Messzeiten also keinen Abbruch.

Um nun die Sache für die Jugendlichen interessant zu machen, könnte man sie bspw. herausfinden lassen, in welcher Kapsel welches Mineral steckt. Anhand der aufgenommenen Spektren und auf Grund der Kenntnis der radioaktiven Zerfallsreihen, die dann natürlich erworben sein muss, kann, wie oben im Detail beschrieben, eine Zuordnung stattfinden. Dazu muss vorher etwas, nicht zu viel, Theorie über γ -Spektren und γ -Spektrometer vermittelt werden. Gewisse Grundkenntnisse über Radioaktivität sind ja aus der Schule (Physikoder evtl. auch Chemieunterricht) bekannt. Neu dürfte die Wechselwirkung von γ -Strahlung mit Materie sein. Dies ist aber ganz wichtig, um die Energieabhängigkeit der Emission der Strahlung zu verstehen, um dann die Peaks auch auf eine sinnvolle Art und Weise interpretieren zu können. Ich denke, das Phänomen der natürlichen Radioaktivität ist sehr eindrucksvoll. Motivierend könnte es sein, ihnen zu erläutern, welche verheerenden Folgen es haben könnte, ein Stück Pechblende ständig in der Hosentasche zu tragen. Dass man dann auch auf Grund gewisser Messanordnungen sagen kann, welche Probe ein Uran- oder Thoriummineral ist, ist eine nicht minder wertvolle Erkenntnis. Entsprechend können die Schüler/-innen dazu bewegt werden, auf eine indirekte Art eine qualitative Analyse einer Naturprobe durchzuführen. Ich denke, so kann man inkl. aller zu vermittelnder Theorie einen Tag im Natlab zubringen und den Schülern/-innen das uns alle betreffende Phänomen "natürliche Radioaktivität" etwas näher bringen. Eine quantitative Analyse mit vielen Formeln, Kurven und Zahlen ist, so denke ich, nicht angebracht und würde sicherlich die meisten auch überfordern. Außerdem erhält man bei einer kürzeren Messzeit, wie im letzten Kapitel erklärt, mit Vorsicht zu genießende Ergebnisse. Ob es sinnvoll ist, mit ihnen eine oder mehrere "Extraktionen" durchzuführen, ist fraglich. Zum einen sind wir mit 24 h Elutionszeit sicherlich nicht im Rahmen des Natlabs und außerdem wäre dann wieder die Gefahr da, die Schüler/-innen mit Radioaktivität zu kontaminieren. Zu beachten ist das Rundschreiben "Strahlenschutz in Schulen" gem. RdErl. D. MK. u. d. MU vom 12.07.2005^[16].

Für Praktikanten/-innen ist eine höhere Messzeit (2 h) besser geeignet ist; zum einen für aussagekräftigere Spektren, zum anderen für eine gütevolle quantitative Analyse. Auch für die Praktikanten/-innen ist es sicherlich zu gefährlich, mit radioaktivem Staub zu arbeiten. Dies sollte also vermieden werden. Was die Praktikanten/-innen aber problemlos tun können, wäre die "Extraktionen" selbständig durchzuführen. Man könnte den Versuch ja so anlegen, dass an einem halben Praktikumstag, die Messungen und "Extraktionen" durchgeführt, und an einem anderen halben Praktikumstag, die Messungen und "Extraktionen" ausgewertet werden. So wären auch die etwas längeren Messzeiten zu ertragen, da nebenbei die "Extraktionen" gemacht werden können. Eine quantitative Auswertung wäre auch möglich, wenn die Theorie vorher entsprechend vermittelt wird. Ansprechwahrscheinlichkeiten und Aktivitäten spielen ja in anderen Praktikumsversuchen auch eine Rolle, sodass hier auch gar nicht viel Neues vermittelt werden müsste. Außerdem gibt es ja in [11] bereits einen Versuch zur γ -Spektroskopie. Computer, die für die Aufnahme und (grafische) Auswertung der Messwerte nötig sind, sind im Praktikum auch bereits vorhanden. Noch zu überlegen wäre, wie man die zu bearbeitende Aufgabenstellung für die Studenten und Studentinnen anlegt. Man könnte ihnen ein Thorium- und ein Uranmineral geben und die Aufgabe könnte auch hier lauten, auf Grund einer qualitativen und quantitativen Analyse die Minerale zuzuordnen. Die "Extraktionen" sollten mit den Elutionsmitteln gemacht werden, die für den größten Lerneffekt sorgen. Ich würde daher Wasser und eine oder zwei Säuren vorschlagen, da die Unterschiede auch zwischen Salz- und Schwefelsäure erheblich waren.

Im Nachhinein bin ich für das Thema dieser Arbeit sehr dankbar. Es hat mir stets Freude bereitet, mich mit dem Thema auseinanderzusetzen. Wahrscheinlich kann man mit anderen spektroskopischen (α - oder β -Spektroskopie) Verfahren die Lücken der γ -Spektroskopie schließen und das Verfahren, insbesondere die quantitative Analyse, so optimieren. Hauptsächlich sind alle durchgeführten Versuche geglückt und die angesprochenen Ziele erreicht worden.

ENDE

V. Anhang

a. Restliche Spektren und Tabellen

i. <u>Messwerte der Proben 1-4 (Ge(Li))</u>

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
10,79	2049	0,28458333	214 Pb	454,77	699	0,09708333	212 Bi
13,75	21745	3,02013889	234 Pa	461,62	694	0,09638889	228 Ac
46,00	4678	0,64972222	210 Pb	469,50	619	0,08597222	214 Bi
63,11	6887	0,95652778	234 Pa	480,68	705	0,09791667	210 Tl
74,62	13883	1,92819444	214 Pb	486,92	772	0,10722222	208 Tl
76,93	16805	2,33402778	214 Pb	533,57	554	0,07694444	234 Pa
80,88	6039	0,83875	226/223 Ra	580,21	628	0,08722222	208 Tl?
83,84	7272	1,01	226/223 Ra	609,11	22269	3,09291667	214 Bi
87,13	9440	1,31111111	214 Pb	665,59	893	0,12402778	214 Bi
89,76	7039	0,97763889	214 Pb	702,69	474	0,06583333	211 Pb
92,39	12958	1,79972222	234 Th	719,76	419	0,05819444	?
94,69	8377	1,16347222	234 Pa	742,41	395	0,05486111	234 Pa
98,31	10041	1,39458333	234 Pa	768,34	2025	0,28125	214 Bi
110,81	5323	0,73930556	234 Pa	786,06	651	0,09041667	214 Pb
114,43	3632	0,50444444	234 Pa	806,08	684	0,095	214 Bi
143,71	3896	0,54111111	235 U	832,33	339	0,04708333	234 Pa
153,91	3095	0,42986111	223 Ra/ 234 Pa	838,90	511	0,07097222	214 Bi
163,45	2846	0,39527778	235 U	934,04	1039	0,14430556	214 Bi
185,81	13256	1,84111111	235 U	963,89	317	0,04402778	228 Ac
205,22	2376	0,33	235 U	1000,95	429	0,05958333	214 Bi
235,80	2449	0,34013889	227 Th	1119,96	3413	0,47402778	214 Bi
241,72	12553	1,74347222	214 Pb	1154,71	533	0,07402778	214 Bi
256,19	1778	0,24694444	227 Th	1237,95	1242	0,1725	214 Bi
258,82	1966	0,27305556	234m Pa	1280,54	378	0,0525	214 Bi
269,34	2141	0,29736111	228 Ac/ 223 Ra	1377,17	816	0,11333333	214 Bi
271,31	1908	0,265	234 Pa	1384,70	247	0,03430556	214 Bi
294,98	24783	3,44208333	214 Pb	1400,75	318	0,04416667	214 Bi
299,92	1284	0,17833333	227 Th	1407,30	488	0,06777778	40 K
323,58	1224	0,17	223 Ra	1460,34	341	0,04736111	214 Bi
329,83	1251	0,17375	227 Th	1507,81	398	0,05527778	214 Bi
338,38	1314	0,1825	228 Ac	1659,99	188	0,02611111	214 Bi
351,85	39714	5,51583333	214 Pb	1728,03	444	0,06166667	214 Bi
402,14	1112	0,15444444	219 Rn?	1763,69	1832	0,25444444	214 Bi
404,77	1073	0,14902778	Pb 211/ Bi 211	1846,09	270	0,0375	214 Bi

A1: Messwerttabelle zu Probe 1, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
10,46	2401	0,33347222	214 Pb	338,38	14751	2,04875	228 Ac
13,42	15068	2,09277778	234 Pa	351,85	1534	0,21305556	214 Pb
15,07	16398	2,2775	231 Pa	409,37	2780	0,38611111	228 Ac
20,66	15995	2,22152778	227 Th	452,75	4325	0,60069444	212 Bi
22,63	14767	2,05097222	231 Pa/234 Pa	462,93	875	0,12152778	228 Ac
39,42	4139	0,57486111	214 Pb	510,97	6088	0,84555556	208 Tl
74,62	21360	2,96666667	214 Pb	546,71	842	0,11694444	228 Ac
76,93	25137	3,49125	214 Pb	583,16	18895	2,62430556	208 Tl
84,17	10748	1,49277778	228 Th / 224 Ra	609,11	937	0,13013889	214 Bi
87,13	16497	2,29125	214 Pb	616,01	709	0,09847222	234 Pa
89,76	24920	3,46111111	214 Pb	726,98	3955	0,54930556	212 Bi
93,05	31356	4,355	234 Th	755,21	900	0,125	234 Pa
99,30	6287	0,87319444	228 Ac	763,14	728	0,10111111	208 Tl
115,91	3520	0,48888889	234 Pa	772,28	1061	0,14736111	228 Ac
128,91	5498	0,76361111	228 Ac	781,79	582	0,08083333	234 Pa
153,91	3594	0,49916667	223 Ra/ 234 Pa	794,59	2084	0,28944444	228 Ac
209,16	8502	1,18083333	228 Ac	830,36	476	0,06611111	234 Pa
216,07	2774	0,38527778	228 Th	835,61	921	0,12791667	228 Ac
238,43	74519	10,3498611	212 Pb	860,55	1897	0,26347222	208 Tl
241,06	9034	1,25472222	224 Ra	911,07	9785	1,35902778	228 Ac
270,00	6159	0,85541667	223 Ra	964,54	1892	0,26277778	228 Ac
277,23	4315	0,03850417	208 Tl	968,81	5468	0,75944444	228 Ac
288,08	1863	0,25875	227 Th ?	1078,66	268	0,03722222	?
294,98	1709	0,23736111	214 Pb	1460,02	344	0,04777778	40 K

321,94 1605 0,22291667 223 Ra ? 1619,75 326 0,04527778 212	299,92
	321,94
327,86 5079 0,70541667 228 Ac 1629,89 314 0,04361111 ?	327,86

A2: Messwerttabelle zu Probe 2, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.				
10,79	3431	0,476527778	214 Pb	338,38	3818	0,530277778	228 Ac	
13,75	37084	5,150555556	234 Pa	351,85	73326	10,18416667	214 Pb	
46,00	8240	1,144444444	210 Pb	386,68	2157	0,299583333	214 Bi	
52,91	7954	1,104722222	214 Pb	401,81	2261	0,314027778	219 Rn?	
63,11	12621	1,752916667	234 Th/234 Pa	405,10	2145	0,297916667	211 Pb/ 211 Bi	
72,32	18233	2,532361111	211 Bi	454,72	1526	0,211944444	?	
74,62	30105	4,18125	214 Pb	462,60	1534	0,213055556	228 Ac	
76,93	29197	4,055138889	214 Pb	510,57	1701	0,23625	208 Tl	
80,88	12114	1,6825	226 /223 Ra	583,16	2461	0,341805556	208 Tl	
83,84	15875	2,204861111	226 /223 Ra	609,11	44782	6,219722222	214 Bi	
87,13	19086	2,650833333	214 Pb	665,26	1814	0,251944444	214 Bi	
89,76	15710	2,181944444	214 Pb	703,02	901	0,125138889	211 Pb	
92,39	23159	3,216527778	234 Th	719,43	789	0,109583333	?	
94,37	23872	3,315555556	234 Pa	742,41	784	0,108888889	234 Pa	
98,31	30622	4,253055556	234 Pa	768,34	4040	0,561111111	214 Bi	
111,14	12899	1,791527778	234 Pa	785,73	1357	0,188472222	214 Pb	
114,43	7930	1,101388889	234 Pa	794,92	691	0,095972222	228 Ac	
143,71	6470	0,898611111	235 U	806,08	1298	0,180277778	214 Bi	
153,91	5607	0,77875	223 Ra/ 234 Pa	820,85	616	0,085555556	234 Pa	
163,45	5165	0,717361111	235 U	831,35	612	0,085	234 Pa	
185,81	21323	2,961527778	235 U	911,07	1312	0,182222222	228 Ac	
205,22	4311	0,59875	235 U	933,71	2169	0,30125	214 Bi	
209,16	4004	0,556111111	228 Ac	968,81	890	0,123611111	228 Ac	
235,80	4836	0,671666667	227 Th	1119,96	6826	0,948055556	214 Bi	
238,43	9301	1,291805556	212 Pb	1154,71	1050	0,14583333	214 Bi	
241,72	21926	3,045277778	214 Pb	1237,62	2394	0,3325	214 Bi	
256,19	3370	0,468055556	227 Th	1280,87	713	0,09902778	214 Bi	
258,82	3888	0,54	234m Pa	1377,17	1663	0,23097222	214 Bi	
269,34	4334	0,601944444	228 Ac	1401,87	639	0,08875	214 Bi	
270,98	3965	0,550694444	228 Ac	1407,30	973	0,13513889	214 Bi	
274,60	3392	0,471111111	214 Pb	1460,22	444	0,06166667	40 K	
277,56	2683	0,372638889	208 Tl	1508,47	808	0,11222222	214 Bi	
294,98	44587	6,192638889	214 Pb	1659,99	407	0,05652778	214 Bi	
299,92	2996	0,416111111	227 Th	1728,03	871	0,12097222	214 Bi	
314,38	2278	0,316388889	214 Pb	1763,36	3600	0,5	214 Bi	
329.83	2467	0.342638889	227 Th	1864.74	464	0.06444444	214 Bi	

A3: Messwerttabelle zu Probe 3, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
11,12	782	0,10861111	214 Pb	238,76	516	0,07166667	212 Pb
13,75	2503	0,34763889	234 Pa	258,16	365	0,05069444	228 Ac
63,11	7370	1,02361111	234 Pa	352,18	300	0,04166667	214 Pb
74,95	2320	0,32222222	214 Pb	583,16	149	0,02069444	208 Tl
84,17	2925	0,40625	226 /223 Ra	609,44	187	0,02597222	214 Bi
92,39	15240	2,11666667	234 Th	742,37	98	0,01361111	234 Pa
98,31	3755	0,52152778	234 Pa	766,37	236	0,03277778	234 Pa
111,14	1995	0,27708333	234 Pa	889,82	44	0,00611111	?
112,79	1938	0,26916667	234 Pa ?	911,07	68	0,00944444	228 Ac
143,71	1833	0,25458333	235 U	1001,27	308	0,04277778	234m Pa
163,45	1095	0,15208333	235 U	1041,94	22	0,00305556	234m Pa
185,81	5871	0,81541667	235 U	1120,29	48	0,00666667	214 Bi
205,22	806	0,11194444	235 U	1460,34	214	0,02972222	40 K

A4: Messwerttabelle zu Probe 4, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
63,11	1402	0,194722222	234 Pa	163,45	1240	0,172222222	235 U
92,72	3011	0,418194444	234 Th	185,81	9638	1,338611111	235 U
98,31	1353	0,187916667	234 Pa	195,35	366	0,050833333	?
105,22	869	0,120694444	235 U	201,93	393	0,054583333	235 U
109,17	980	0,136111111	235 U	205,55	917	0,127361111	235 U
143,71	2389	0,331805556	235 U				

A5: Messwerttabelle zu Probe 4, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
13,42	1284	0,178333333	234 Pa	510,90	110	0,015277778	208 Tl
72,65	708	0,098333333	212 Bi	583,16	105	0,014583333	208 Tl
74,62	914	0,126944444	214 Pb	609,44	124	0,017222222	214 Bi
84,49	662	0,091944444	228 Th?	661,32	66	0,009166667	214 Bi
238,76	303	0,042083333	214 Pb	911,40	61	0,008472222	212 Bi
295,31	176	0,024444444	212 Pb	1237,95	31	0,004305556	234 Pa
338,38	112	0,015555556	228 Ac	1461,00	203	0,028194444	40 K
351,85	168	0,023333333	214 Pb				

A6: Messwerttabelle: Untergrund, Ge(Li)

i. <u>Messwerte der Proben 1-4 (NaI)</u>

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
30,6	8956	1,658518519	223 Ra/234 Pa	609,4	3859	0,71462963	214 Bi
46,3	13589	2,516481481	210 Pb	770,1	3497	0,647592593	214 Bi
77,4	53978	9,995925926	214 Pb	933,5	3867	0,716111111	214 Bi
92,6	23056	0,028437899	234 Th	1116,5	7012	1,298518519	214 Bi
150,2	59078	10,94037037	223 Ra?	1237,8	2563	0,47462963	234 Pa
188,8	25987	4,810740741	235 U ?	1387,5	1443	0,267222222	214 Bi
243,5	18363	3,400555556	214 Pb	1752,8	3050	0,564814815	214 Bi
269,3	1605	0,297361	228 Ac	1255,9	402	0,074444444	214 Bi
297,1	38400	7,111111111	214 Pb	1451,0	558	0,103333333	214 Bi
354,1	10893	2,017222222	227 Th	1579,9	689	0,127592593	?

A7: Messwerttabelle zu Probe 1, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,8	8956	1,658518519	227 Th	460,1	3497	0,647592593	208 Tl
40,0	13589	2,516481481	214 Pb	511,2	3867	0,716111111	214 Bi
76,0	53978	9,995925926	214 Pb	583,1	7012	1,298518519	214 Bi
94,2	59078	10,94037037	234 Pa	723,2	2563	0,47462963	234 Pa?
106,0	22987	4,810740741	235 U ?	789,8	1443	0,267222222	?
137,5	18363	3,400555556	212 Pb	905,5	3050	0,564814815	214 Bi
240,6	38400	7,111111111	214 Pb	1095,5	612	0,113333333	?
338,6	10893	2,017222222	228 Ac	1255,9	402	0,074444444	214 Bi
406,0	3859	0,71462963	228 Ac	1451,0	558	0,103333333	214 Bi

A8: Messwerttabelle zu Probe 2, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,9	14479	2,681296296	227 Th	350,8	33696	6,980740741	214 Pb
43,9	28763	5,326481481	210 Pb	360,0	32978	6,107037037	?
55,0	30745	5,693518519	214 Pb ?	465,0	4963	0,919074074	208 Tl
74,6	30756	5,695555556	214 Pb	604,2	16746	3,101111111	214 Bi
92,3	28756	5,695555556	234 Th	766,3	3756	0,695555556	214 Bi
150,3	28132	5,175555556	235 U ?	923,3	2029	0,375740741	234 Pa
187,1	34993	6,480185185	212 Pb/ 235 U	1107,7	3345	0,61944444	214 Bi
240,9	31745	5,878703704	214 Pb	1230,6	1894	0,350740741	234 Pa
294,1	31956	5,91777778	214 Pb	1374,9	1825	0,337962963	214 Bi
318,0	14259	2,640555556	234 Pa	1740,5	832	0,154074074	214 Bi

A9: Messwerttabelle zu Probe 3, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
30,8	7712	1,42814815	223 Ra/234 Pa	351,8	1837	0,34018519	234 Pa
63,4	23874	4,42111111	234 Pa	600,4	909	0,16833333	214 Bi?
95,4	26123	4,83759259	234 Pa?	765,3	610	0,11296296	208 Tl
148,4	10617	1,96611111	223 Ra?	986,6	401	0,07425926	228 Ac
189,3	12056	2,23259259	235 U	1132,4	295	0,05462963	214 Bi
241,3	5410	1,00185185	212 Pb	1454,8	209	0,0387037	40 K

A10: Messwerttabelle zu Uranylnitrat (nicht umkristallisiert), NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
28,8	2735	0,506481481	223 Ra/234 Pa	595,1	606	0,112222222	?
76,4	9587	1,77537037	214 Pb	954,5	210	0,038888889	?
236,9	4389	0,812777778	227 Th	1116,0	186	0,03444444	214 Bi
345,1	1510	0,27962963	214 Pb?	1443,4	311	0,057592593	40 K
506,1	698	0,129259259	208 Tl?	1754,2	36	0,0066666667	214 Bi

A11: Messwerttabelle zum Untergrund, NaI

ii. Messwerte der Extraktionen (Ge(Li) und NaI)

Е	nergie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
	13,42	1913	0,265694444	234 Pa	236,13	246	0,034166667	227 Th
	46,00	1028	0,142777778	210 Pb	242,05	302	0,041944444	214 Pb
	63,11	1193	0,165694444	234 Pa	295,31	347	0,048194444	214 Pb
	67,71	765	0,10625	?	385,81	515	0,071527778	214 Pb
	84,17	955	0,132638889	226 Ra	609,44	426	0,059166667	214 Bi
	92,39	1724	0,23944444	234 Th	1120,61	34	0,004722222	214 Bi
	143,71	562	0,078055556	235 U	1461,26	206	0,028611111	40 K
	185,81	927	0,12875	235 U				

A12: Messwerttabelle zur Elution von sekundären Uranerzen mit Salzsäure, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,6	1847	0,342037037	227 Th	502,2	639	0,118333333	228 Ac
44,8	4953	0,917222222	210 Pb	596,8	700	0,12962963	214 Bi
74,2	9859	1,825740741	214 Pb	902,9	242	0,044814815	214 Bi?
93,4	12506	2,315925926	228 Ac	1125,2	130	0,024074074	214 Bi
125,0	9432	1,746666667	228 Ac	1445,1	319	0,059074074	40 K
187,6	6205	1,149074074	235 U	1755,1	37	0,006851852	214 Bi
346,0	1897	0,351296296	228 Ac				

A13: Messwerttabelle zur Elution von sekundären Uranerzen mit Salzsäure, t=5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
10,79	220	0,030555556	214 Pb	185,84	598	0,083055556	235 U
13,75	1587	0,220416667	234 Pa	270,00	158	0,021944444	227 Ac
63,11	828	0,115	234 Pa	352,18	206	0,028611111	214 Pb
72,32	786	0,109166667	211 Bi	609,77	169	0,023472222	214 Bi
74,62	1018	0,141388889	214 Pb	1120,95	43	0,005972222	214 Bi
92,39	1113	0,154583333	234 Th	1377,50	18	0,0025	214 Bi
143,38	465	0,064583333	235 U	1460,02	180	0,025	40 K

A14: Messwerttabelle zur Elution von sekundären Uranerzen mit Schwefelsäure, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	
29,9	3056	0,565925926	223 Ra/234 Pa	
76,5	9859	1,825740741	214 Pb	
355,0	1798	0,332962963	214 Pb	
602,0	634	0,117407407	214 Bi	
915,6	298	0,055185185	228 Ac?	
1122,3	147	0,027222222	214 Bi	
1455,2	387	0,071666667	40 K	
1751,3	57	0,010555556	214 Bi	

A15: Messwerttabelle zur Elution von sekundären Uranerzen mit Schwefelsäure, t=5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung
13,42	1415	0,196527778	234 Pa
527,98	49	0,006805556	234 Pa
1460,02	49	0,006805556	40 K
1763,69	196	0,027222222	214 Bi

A16: Messwerttabelle zur Elution von sekundären Uranerzen mit Wasser, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung
22,3	1389	0,257222222	231 Pa
123,0	6832	1,265185185	228 Ac
1452,4	278	0,051481481	40 K
1747,6	31	0,005740741	214 Bi

A17: Messwerttabelle zur Elution von sekundären Uranerzen mit Wasser, t=5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
46,33	478	0,066388889	210 Pb	609,44	217	0,030138889	214 Bi
186,14	418	0,058055556	235 U	727,31	49	0,006805556	212 Bi
242,38	254	0,035277778	214 Pb	1119,64	57	0,007916667	214 Bi
295,31	309	0,042916667	214 Pb	1460,67	216	0,03	40 K
352,18	394	0,054722222	214 Pb				

A18: Messwerttabelle zur Elution von sekundären Uranerzen mit EDTA, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
29,5	3002	0,055925926	234 Pa/223 Ra	603,0	702	0,13	214 Bi
75,1	10018	1,855185185	214 Pb	910,0	298	0,055185185	228 Ac
111,3	10879	2,01462963	234 Pa	1106,7	265	0,049074074	214 Bi
350,6	1945	0,360185185	214 Pb	1451,6	378	0,07	40 K
504,9	789	0,146111111	208 Tl	1752,3	71	0,013148148	214 Bi

A19: Messwerttabelle zur Elution von sekundären Uranerzen mit EDTA, t=5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
11,12	542	0,075277778	214 Pb	277,23	473	0,065694444	208 Tl
13,42	2735	0,379861111	234 Pa	294,98	283	0,039305556	214 Pb
22,63	1729	0,240138889	231 Pa	300,24	503	0,069861111	227 Th
39,42	795	0,110416667	214 Pb	328,19	498	0,069166667	228 Ac
74,62	4120	0,572222222	214 Pb	338,38	1412	0,196111111	228 Ac
76,93	4419	0,61375	214 Pb	352,18	296	0,041111111	214 Pb
84,49	1526	0,211944444	228 Th	409,37	234	0,0325	228 Ac
87,13	2237	0,310694444	214 Pb	463,26	388	0,053888889	228 Ac
89,76	1737	0,24125	214 Pb	510,90	553	0,076805556	208 Tl
93,05	1686	0,234166667	234 Th	583,16	1370	0,190277778	208 Tl
99,30	968	0,13444444	228 Ac	727,64	355	0,049305556	212 Bi
105,22	1066	0,148055556	235 U	795,25	169	0,023472222	228 Ac
108,84	888	0,123333333	227/234 Th	835,61	80	0,011111111	228 Ac
128,91	1123	0,155972222	228 Ac	860,88	160	0,022222222	208 Tl
209,16	990	0,1375	228 Ac	911,40	830	0,115277778	228 Ac
238,76	7384	1,025555556	212 Pb	969,46	450	0,0625	228 Ac
241,06	1047	0,145416667	224 Ra	1461,00	209	0,029027778	40 K
270,33	681	0,094583333	223 Ra				

A20: Messwerttabelle zur Elution von Orangit mit Salzsäure, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
28,7	3317	0,614259259	223 Ra/234 Pa	587,5	1194	0,221111111	208 Tl
77,1	17107	3,167962963	214 Pb	727,4	497	0,092037037	212 Bi
132,9	11709	2,168333333	228 Ac?	907,0	486	0,09	228 Ac?
241,3	7991	1,479814815	214 Pb	1453,0	351	0,065	40 K
342,3	2819	0,522037037	228 Ac	1596,7	99	0,018333333	
513,6	1012	0,187407407	208 Tl	1762,3	48	0,008888889	214 Bi

A21: Messwerttabelle zur Elution von Orangit mit Salzsäure, t=5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung
11,12	177	0,024583333	214 Pb
84,49	729	0,10125	228 Th
87,46	629	0,087361111	214 Pb
727,69	29	0,004027778	212 Bi
968,15	31	0,004305556	228 Ac?
1461,00	300	0,041666667	40 K

A22: Messwerttabelle zur Elution von Orangit mit Schwefelsäure, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
77,2	10181	1,88537037	214 Pb	593,1	895	0,165740741	214 Bi
237,1	4712	0,872592593	212 Pb	1102,3	203	0,037592593	214 Bi
277,3	1942	0,35962963	208 Tl	1438,5	275	0,050925926	40 K
347,3	1942	0,35962963	214 Pb	1735,8	71	0,013148148	214 Bi

A23: Messwerttabelle zur Elution von Orangit mit Schwefelsäure, t=5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung
964,21	35	0,004861111	228 Ac
1114,39	16	0,002222222	214 Bi?
1460,34	196	0,027222222	40 K
2179,38	4	0,000555556	?

A24: Messwerttabelle zur Elution von Orangit mit Wasser, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung
906,8	345	0,063888889	228 Ac
1748,1	40	0,007407407	214 Bi

A25: Messwerttabelle zur Elution von Orangit mit Wasser, t=5400 s, NaI

Energie (keV) Counts/t		Counts/s	Zuordnung	
12,43	8837	1,227361111	238 U?	
15,39	5370	0,745833333	227 Th	
19,67	3693	0,512916667	227 Th	
238,76	124	0,017222222	212 Pb	
342,65	92	0,012777778	228 Ac	
970,12	47	0,006527778	228 Ac	
1460,02	212	0,029444444	40 K	

A26: Messwerttabelle zur Elution von Orangit mit EDTA, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	
28,7	390	0,072222222	223 Ra/ 234 Pa	
76,0	1292	0,239259259	214 Pb	
238,9	223	0,041296296	212 Pb	
348,4	446	0,082592593	214 Pb	
600,4	655	0,121296296	214 Bi	
1102,6	197	0,036481481	214 Bi	
1449,8	289	0,053518519	40 K	
1744,8	67	0,012407407	214 Bi	

A27: Messwerttabelle zur Elution von Orangit mit EDTA, t=5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
11,12	761	0,105694444	214 Pb	235,80	705	0,097916667	227 Th
13,42	3439	0,477638889	234 Pa	238,43	1417	0,196805556	212 Pb
46,33	2589	0,359583333	210 Pb	242,05	650	0,090277778	214 Pb
63,11	2454	0,340833333	234 Pa	256,19	468	0,065	227 Th
67,39	2036	0,282777778	?	269,67	585	0,08125	228 Ac
74,62	2845	0,395138889	214 Pb	285,78	275	0,038194444	227 Th
76,93	1942	0,269722222	214 Pb	294,98	849	0,117916667	214 Pb
80,88	6621	0,919583333	226 Ra	299,92	307	0,042638889	227 Th
83,84	1632	0,2266666667	226 Ra	338,38	459	0,06375	228 Ac
87,13	943	0,130972222	214 Pb	351,85	1354	0,188055556	214 Pb
92,39	1161	0,16125	234 Th	402,14	227	0,031527778	219 Rn?
98,31	1364	0,189444444	234 Pa	405,10	177	0,024583333	211 Pb/ 211 Bi
104,89	943	0,130972222	235 U	583,16	322	0,044722222	208 Tl

112,79	1161	0,16125	?	609,44	998	0,138611111	214 Bi
143,71	1364	0,18944444	235 U	861,21	76	0,010555556	208 Tl
153,91	809	0,112361111	223 Ra?	934,04	70	0,009722222	214 Bi
163,12	775	0,107638889	235 U	969,13	129	0,017916667	228 Ac
185,81	5145	0,714583333	235 U	1001,93	125	0,017361111	214 Bi
205,22	574	0,079722222	235 U	1120,62	144	0,02	214 Bi
209,42	459	0,06375	228 Ac	1460,23	256	0,035555556	40 K

A28: Messwerttabelle zur Elution von Pechblende mit Salzsäure, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
30,5	4618	0,855185185	223 Ra/234 Pa	240,7	5204	0,963703704	212 Pb
46,3	5748	1,064444444	210 Pb	348,7	2110	0,390740741	214 Pb
65,1	12105	2,241666667	234 Pa	599,3	886	0,164074074	214 Bi
94,2	17248	3,194074074	234 Th	903,0	419	0,077592593	?
148,8	10008	1,853333333	235 U	1446,4	233		40 K
189,0	9548	1,768148148	235 U				

A29: Messwerttabelle zur Elution von Pechblende mit Salzsäure, t=5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
13,42	1493	0,207361111	234 Pa	242,05	262	0,036388889	214 Pb
62,78	560	0,077777778	234 Pa	295,31	284	0,039444444	214 Pb
72,32	819	0,11375	234 Pa	351,85	404	0,056111111	214 Pb
74,95	1068	0,148333333	214 Pb	609,44	168	0,023333333	214 Bi
92,39	692	0,096111111	234 Th	1120,62	56	0,007777778	214 Bi
185,81	578	0,080277778	235 U	1460,67	217	0,030138889	40 K

A30: Messwerttabelle zur Elution von Pechblende mit Schwefelsäure, t=7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
64,2	3406	0,630740741	234 Pa	1119,2	139	0,025740741	214 Bi
75,4	10517	1,947592593	214 Pb	1449,1	259	0,047962963	40 K
239,2	4510	0,835185185	212 Pb	1744,1	69	0,012777778	214 Bi
350,7	2106	0,39	214 Pb	2605,8	61	0,011296296	214 Bi
962,2	234	0,043333333	214 Bi				

A31: Messwerttabelle zur Elution von Pechblende mit Schwefelsäure, t=5400 s, NaI

<u>Bemerkung:</u> Wegen der geringen zur Verfügung stehenden Menge an Pechblende definierter Größe wurden an Pechblende nur die Elutionen mit Salz- und Schwefelsäure durchgeführt.

iii. Messwerte des Europium-Standards

Energie (keV)	counts/t	counts/s	Zuordnung	Forts.			
39,42	23556	3,27166667	152 Eu	778,84	1798	0,24972222	152 Eu
121,67	25456	3,53555556	152 Eu	867,44	478	0,06638889	152 Eu
244,68	3620	0,50277778	152 Eu	964,21	1275	0,17708333	152 Eu
344,29	10724	1,48944444	152 Eu	1085,87	901	0,12513889	152 Eu
411,34	779	0,10819444	152 Eu	1212,39	124	0,01722222	152 Eu
444,20	802	0,11138889	152 Eu	1299,21	116	0,01611111	152 Eu

A32: Messwerttabelle zu ¹⁵²Eu, t=1800 s, Ge(Li)

Energie (keV)	counts/t	counts/s	Zuordnung				
38,4	43447	8,04574074	152 Eu	686,1	596	0,11037037	152 Eu
124,5	28867	5,34574074	152 Eu	779,5	1002	0,18555555	152 Eu
246,8	4618	0,85518519	152 Eu	962,8	712	0,13185185	152 Eu
347,2	5698	1,05518519	152 Eu	1099,4	725	0,13425926	?
447,0	1204	0,22296296	152 Eu				

A33: Messwerttabelle zu ¹⁵²Eu, t=1800 s, NaI

iv. <u>Messwerte der getrockneten Proben nach den "Extraktionen"</u>

A35: γ -Spektrum von sekundärem Uran nach der "Extraktion" in Wasser, 7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
10,46	2788	0,387222222	214 Pb	329,5	2016	0,28	227 Th
13,75	32082	4,455833333	234 Pa	386,69	1727	0,239861111	?
20,00	10235	1,421527778	227 Th	389,00	1848	0,256666667	?
46,00	7226	1,003611111	210 Pb	401,81	1914	0,265833333	219 Rn?
52,91	7148	0,992777778	214 Pb	405,10	1832	0,25444444	211 Pb/ 211 Bi
63,11	11807	1,639861111	234 Pa	455,05	1184	0,16444444	?
67,71	10146	1,409166667	?	462,28	1262	0,175277778	228 Ac
72,34	16146	2,2425	211 Bi	469,83	1009	0,140138889	?
74,62	27140	3,769444444	214 Pb	474,43	911	0,126527778	?
76,93	25525	3,545138889	214 Pb	510,57	1354	0,188055556	208 Tl
80,88	10802	1,500277778	226 Ra	579,88	995	0,138194444	234 Pa?
83,84	14524	2,017222222	226 Ra	583,16	2076	0,288333333	208 Tl
87,13	16658	2,313611111	214 Pb	609,44	35553	4,937916667	214 Bi
89,76	13452	1,868333333	214 Pb	665,59	1416	0,196666667	214 Bi
92,39	20810	2,890277778	234 Th	703,34	752	0,104444444	211 Pb
94,69	18464	2,56444444	234 Pa	720,09	651	0,090416667	?
98,31	24362	3,383611111	234 Pa	768,34	3201	0,444583333	214 Bi
105,22	6485	0,900694444	235 U	786,06	1099	0,152638889	214 Pb
111,14	10634	1,476944444	234 Pa	806,08	1034	0,143611111	214 Bi
114,43	6797	0,944027778	234 Pa	831,68	563	0,078194444	234 Pa
143,71	5767	0,800972222	235 U	839,22	739	0,102638889	228 Ac?
154,24	4852	0,673888889	223 Ra?	860,55	522	0,0725	210 Tl
163,45	4409	0,612361111	235 U	911,40	1167	0,162083333	228 Ac
185,81	20979	2,91375	235 U	934,37	1653	0,229583333	214 Bi
205,22	3574	0,496388889	235 U	964,54	570	0,079166667	
208,83	3292	0,457222222	228 Ac	969,46	759	0,105416667	228 Ac
235,80	4068	0,565	227 Th	1001,6	718	0,099722222	214 Bi
238,43	7992	1,11	212 Pb	1120,24	5216	0,72444444	214 Bi
241,72	17912	2,487777778	214 Pb	1155,69	749	0,104027778	214 Bi
256,19	2834	0,393611111	227 Th	1281,20	552	0,076666667	214 Bi
258,49	3111	0,432083333	234m Pa	1377,83	1256	0,17444444	214 Bi
269,34	3832	0,532222222	228 Ac	1401,73	515	0,071527778	214 Bi
271,31	3332	0,462777778	228 Ac	1464,33	365	0,050694444	40 K
274,60	2688	0,373333333	214 Pb	1509,45	591	0,082083333	214 Bi
294,98	36161	5,022361111	214 Pb	1660,32	276	0,038333333	214 Bi
299,92	2559	0,355416667	227 Th	1729,02	715	0,099305556	214 Bi
323,91	2035	0,282638889	223 Ra?	1763,69	3003	0,417083333	214 Bi
327,53	1969	0,273472222	228 Ac	1846,74	439	0,060972222	214 Bi

A38: γ -Spektrum von Pechblende nach der "Extraktion" in Salzsäure, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,7	11091	2,053888889	227 Th	471,0	3989	0,738703704	?
44,3	25068	4,642222222	210 Pb	604,9	13987	2,590185185	214 Bi
75,3	65535	12,13611111	214 Pb	766,9	2703	0,500555556	214 Bi
95,5	65535	12,13611111	234 Pa	921,0	1690	0,312962963	228 Ac?
149,2	24245	4,489814815	235 U	1109,6	2298	0,425555556	214 Bi
186,8	29830	5,524074074	235 U	1231,3	1022	0,189259259	214 Bi
240,9	25035	4,636111111	214 Pb	1375,6	1365	0,252777778	214 Bi
294,2	25789	4,775740741	214 Pb	1483,4	704	0,13037037	40 K
350,9	30734	5,691481481	214 Pb	1743,6	1119	0,207222222	214 Bi

A39:	MWT von	Pechblende	nach der	"Extraktion"	in	Salzsäure,	5400	s, N	laI
------	---------	------------	----------	--------------	----	------------	------	------	-----

Energie (keV)	Counts/t	Counts/s	Zuordnung				
10,79	3351	0,465416667	214 Pb	330,16	2263	0,314305556	227 Th
13,75	34139	4,741527778	234 Pa	338,38	3556	0,493888889	228 Ac
46,00	7925	1,100694444	210 Pb	351,85	60755	8,438194444	214 Pb
52,91	7425	1,03125	214 Pb	386,68	1711	0,237638889	?
63,11	12406	1,723055556	234 Pa	401,81	2042	0,283611111	219 Rn?
67,39	10722	1,489166667	?	405,10	1943	0,269861111	211 Pb/ 211 Bi
72,32	16593	2,304583333	211 Bi	455,05	1239	0,172083333	?
74,62	27405	3,80625	214 Pb	462,83	1353	0,187916667	228 Ac
76,93	26438	3,671944444	214 Pb	510,57	1582	0,219722222	208 Tl
80,88	11735	1,629861111	226 Ra	583,16	2611	0,362638889	208 Tl
83,84	16084	2,233888889	226 Ra	609,44	35970	4,995833333	214 Bi
87,13	17510	2,431944444	214 Pb	665,59	1400	0,19444444	214 Bi
89,76	14579	2,024861111	214 Pb	703,34	787	0,109305556	211 Pb
92,39	23863	3,314305556	234 Th	720,09	693	0,09625	?
94,69	19032	2,643333333	234 Pa	742,74	652	0,090555556	234 Pa
98,31	24758	3,438611111	234 Pa	768,67	3160	0,438888889	214 Bi
105,22	7059	0,980416667	235 U	785,73	1161	0,16125	214 Pb
111,14	10738	1,491388889	234 Pa	794,92	652	0,090555556	228 Ac
114,43	6899	0,958194444	234 Pa	806,08	1092	0,151666667	214 Bi
143,71	6047	0,839861111	235 U	820,85	506	0,070277778	234 Pa
154,24	5187	0,720416667	?	832,00	601	0,083472222	234 Pa
163,45	4521	0,627916667	235 U	911,07	1448	0,201111111	228 Ac
185,81	20598	2,860833333	235 U	934,37	1636	0,227222222	214 Bi
205,22	3887	0,539861111	235 U	969,13	909	0,12625	228 Ac
209,16	3614	0,501944444	228 Ac	1120,29	5396	0,74944444	214 Bi
235,80	4599	0,63875	227 Th	1155,04	847	0,117638889	214 Bi
238,43	10286	1,428611111	212 Pb	1238,28	1904	0,26444444	
242,05	18334	2,546388889	214 Pb	1280,87	635	0,088194444	214 Bi
256,19	3160	0,438888889	227 Th	1377,83	1338	0,185833333	214 Bi
258,82	3278	0,455277778	234m Pa	1401,73	488	0,067777778	214 BI

269,34	4280	0,59444444	228 Ac	1407,30	668	0,092777778	214 Bi
271,31	3689	0,512361111	228 Ac	1460,02	365	0,050694444	40 K
274,60	2818	0,391388889	214 Pb	1508,80	704	0,097777778	214 Bi
277,56	2317	0,321805556	208 Tl	1659,59	316	0,043888889	214 Bi
295,31	36964	5,133888889	214 Pb	1729,02	737	0,102361111	214 Bi
300,24	2749	0,381805556	227 Th	1764,01	2956	0,410555556	214 Bi
314,38	2278	0,316388889	?	1847,07	437	0,060694444	214 Bi
327,86	2150	0,298611111		2117,66	180	0,025	214 Bi

A41: MWT von Pechblende nach der "Extraktion" in Schwefelsäure, 7200 s, Ge(Li)

A42: γ -Spektrum von Pechblende nach der "Extraktion" in Schwefelsäure, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,7	8988	1,664444444	234 Pa	504,0	2664	0,493333333	214 Bi
45,0	21958	4,066296296	210 Pb	608,7	11528	2,134814815	214 Bi
76,6	64012	11,85407407	214 Pb	772,1	2558	0,473703704	214 Bi
92,4	56910	10,53888889	234 Th	927,4	1452	0,268888889	234 Pa
150,5	23415	4,336111111	235 U	1115,0	1764	0,326666667	214 Bi
188,4	28416	5,262222222	212 Pb/ 235 U	1238,4	872	0,161481481	?
242,5	21879	4,051666667	214 Pb	1382,0	902	0,167037037	214 Bi
296,6	21440	3,97037037	214 Pb	1464,7	672	0,12444444	40 K
353,7	23805	4,408333333	214 Pb	1751,6	856	0,158518519	214 Bi

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
11,12	2616	0,363333333	214 Pb	300,24	5022	0,6975	227 Th
13,42	13830	1,920833333	234 Pa	321,61	1489	0,206805556	223 Ra?
22,63	13141	1,825138889	231 Pa?	327,86	4354	0,604722222	228 Ac
74,62	19729	2,740138889	214 Pb	332,46	1663	0,230972222	227 Th?
76,93	23102	3,208611111	214 Pb	338,38	13427	1,864861111	228 Ac
84,17	9594	1,3325	228 Th?	351,85	1367	0,189861111	214 Pb
87,13	14796	2,055	214 Pb	409,70	2475	0,34375	228 Ac
89,76	22273	3,093472222	214 Pb	452,75	954	0,1325	?
93,05	26773	3,718472222	234 Th	463,26	3833	0,532361111	228 Ac
99,30	5738	0,796944444	228 Ac	510,90	5624	0,781111111	208 Tl
105,22	11671	1,620972222	235 U	583,49	16665	2,314583333	208 Tl
108,51	6262	0,869722222	?	609,11	782	0,108611111	214 Bi
115,09	3186	0,4425	234 Pa	727,31	3574	0,496388889	212 Bi
128,91	4889	0,679027778	228 Ac	755,54	824	0,114444444	234 Pa
153,91	3334	0,463055556	223 Ra?	782,12	547	0,075972222	234 Pa
199,30	2486	0,345277778	?	785,73	705	0,097916667	214 Pb
209,16	7663	1,064305556	228 Ac	795,25	1822	0,253055556	228 Ac
216,07	2425	0,336805556	228 Th	830,36	421	0,058472222	234 Pa
238,76	65947	9,159305556	212 Pb	835,94	770	0,106944444	228 Ac
241,06	8529	1,184583333	224 Ra	860,88	1739	0,241527778	208 Tl
252,57	1618	0,224722222	227 Th?	964,87	1700	0,236111111	228 Ac
270,33	5445	0,75625	223 Ra	1461,33	256	0,035555556	40 K
277,23	3865	0,536805556	208 Tl	1495,70	210	0,029166667	228 Ac
288,41	1633	0,226805556	227 Th?	1587,68	564	0,078333333	228 Ac
295,31	1468	0,203888889	214 Pb	1620,07	306	0,0425	212 Bi

A45: MWT von Orangit nach der "Extraktion" in Salzsäure, 7200 s, Ge(Li)

A46: γ -Spektrum von Orangit nach der "Extraktion" in Salzsäure, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
22,4	8112	1,502222222	231 Pa?	507,1	3770	0,698148148	214 Bi
80,1	50017	9,262407407	214 Pb	580,7	6198	1,147777778	214 Bi
92,0	52069	9,642407407	234 Th	720,5	1981	0,366851852	234 Pa
105,6	27317	5,058703704	235 U	901,2	2487	0,460555556	214 Bi
243,6	37049	6,860925926	224 Ra/ 212 Pb	1093,2	601	0,111296296	?
337,0	9271	1,716851852	228 Ac	1440,0	440	0,081481481	40 K
405,2	3302	0,611481481	228 Ac	1573,1	609	0,112777778	?
459,1	3506	0,649259259	208 Tl				

A47: MWT von Orangit nach der "Extraktion" in Salzsäure, 5400 s, Nal

A48: γ -Spektrum von Orangit nach der "Extraktion" in Schwefelsäure, 7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
11,45	2459	0,341527778	214 Pb	300,24	4345	0,603472222	227 Th
13,42	12358	1,716388889	234 Pa	327,86	3940	0,547222222	228 Ac
22,31	11891	1,651527778	231 Pa?	332,46	1461	0,202916667	227 Th?
74,62	17710	2,459722222	214 Pb	338,38	11652	1,618333333	228 Ac
76,93	20495	2,846527778	214 Pb	351,85	1242	0,1725	214 Pb
84,17	8611	1,195972222	228 Th?	409,70	2070	0,2875	228 Ac
87,13	13249	1,840138889	214 Pb	452,75	863	0,119861111	?
89,76	19057	2,646805556	214 Pb	463,26	3284	0,456111111	228 Ac
93,38	22935	3,185416667	234 Th	510,90	4843	0,672638889	208 Tl
99,30	4972	0,690555556	228 Ac	583,49	14510	2,015277778	208 Tl
105,22	10224	1,42	235 U	609,11	714	0,099166667	214 Bi
108,51	5343	0,742083333	?	727,31	3248	0,451111111	212 Bi
115,09	2862	0,3975	234 Pa	755,54	730	0,101388889	234 Pa
128,91	4350	0,604166667	228 Ac	782,12	537	0,074583333	234 Pa
153,91	2889	0,40125	223 Ra?	785,73	764	0,106111111	214 Pb
199,30	2174	0,301944444	?	795,25	1619	0,224861111	228 Ac
209,16	6782	0,94194444	228 Ac	830,36	393	0,054583333	234 Pa
216,07	2187	0,30375	228 Th	835,94	722	0,100277778	228 Ac
238,76	58127	8,073194444	212 Pb	860,88	1562	0,216944444	208 Tl
241,06	6585	0,914583333	224 Ra	964,87	1465	0,203472222	228 Ac
252,57	1449	0,20125	227 Th?	1460,02	295	0,040972222	40 K
270,33	4883	0,678194444	223 Ra	1494,39	138	0,019166667	228 Ac
277,23	3336	0,463333333	208 Tl	1587,68	491	0,068194444	228 Ac
288,41	1464	0,203333333	227 Th?	1619,75	251	0,034861111	212 Bi
295.31	1335	0 185416667	214 Pb				

A49: MWT von Orangit nach der "Extraktion" in Schwefelsäure, 7200 s, Ge(Li)

A50: γ -Spektrum von Orangit nach der "Extraktion" in Schwefelsäure, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
20,1	7682	1,422592593	227 Th	462,0	3589	0,66462963	228 Ac
76,2	42487	7,867962963	214 Pb	512,6	3412	0,631851852	208 Tl
94,2	49923	9,245	234 Th	583,6	5615	1,039814815	208 Tl
136,4	18491	3,424259259	212 Pb	724,3	1804	0,334074074	212 Bi
155,0	17119	3,170185185	223 Ra?	907,6	2504	0,463703704	
240,8	34111	6,316851852	212 Pb	1107,3	528	0,097777778	214 Bi
339,3	9317	1,72537037	228 Ac	1453,3	397	0,073518519	40 K
407,0	3212	0,594814815	228 Ac	1583,7	511	0,09462963	228 Ac

A51: MWT von Orangit nach der "Extraktion" in Schwefelsäure, 5400 s, Nal

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
10,46	2345	0,325694444	214 Pb	338,38	14716	2,043888889	228 Ac
13,42	14560	2,022222222	234 Pa	351,85	1498	0,208055556	214 Pb
15,07	15793	2,193472222	227 Th	409,70	2606	0,361944444	228 Ac
20,66	15779	2,191527778	227 Th	452,75	4036	0,560555556	?
22,63	14028	1,948333333	231 Pa?	463,26	823	0,114305556	228 Ac
39,42	4100	0,569444444	214 Pb	510,97	5874	0,815833333	208 Tl
74,62	21316	2,960555556	214 Pb	546,71	842	0,116944444	
76,93	24790	3,443055556	214 Pb	583,16	18223	2,530972222	208 Tl
84,17	10407	1,445416667	228 Th	609,11	892	0,123888889	214 Bi
87,13	16076	2,232777778	214 Pb	616,01	607	0,084305556	
89,76	24497	3,402361111	214 Pb	726,98	3878	0,538611111	212 Bi ?
93,05	29933	4,157361111	234 Th	755,54	873	0,12125	234 Pa
99,30	6248	0,867777778	228 Ac	763,04	706	0,098055556	208 Tl
115,91	3444	0,478333333	234 Pa	772,28	960	0,133333333	228 Ac
128,91	5309	0,737361111	228 Ac	781,79	547	0,075972222	234 Pa
153,91	3541	0,491805556	223 Ra ?	794,92	2039	0,283194444	228 Ac
209,16	8258	1,146944444	228 Ac	830,36	478	0,066388889	234 Pa
215,74	2585	0,359027778	228 Th	835,61	829	0,115138889	228 Ac
238,43	71649	9,95125	212 Pb	860,55	1846	0,256388889	208 Tl
241,06	7742	1,075277778	224 Ra	911,07	9364	1,300555556	228 Ac
270,00	6071	0,843194444	223 Ra	964,54	1769	0,245694444	228 Ac
277,23	4132	0,573888889	208 Tl	968,81	5468	0,759444444	228 Ac
288,08	1800	0,25	227 Th ?	1078,66	248	0,03444444	207 Bi ?
294,98	1565	0,217361111	214 Pb	1460,02	243	0,03375	228 Ac
299,92	5413	0,751805556	227 Th	1495,38	310	0,043055556	228 Ac
321,94	1598	0,221944444	223 Ra ?	1619,75	344	0,047777778	212 Bi
327,86	4681	0,650138889	228 Ac	1629,89	309	0,042916667	212 Bi
332,13	1756	0,243888889	227 Th ?				

A53: MWT von Orangit nach der "Extraktion" in Wasser, 7200 s, Ge(Li)

A54: γ-Spektrum von Orangit nach der "Extraktion" in Wasser, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,7	6196	1,147407407	227 Th	505,0	3888	0,72	208 Tl
75,0	44999	8,333148148	214 Pb	577,8	6526	1,208518519	208 Tl
93,5	56489	10,46092593	234 Th	716,5	1986	0,367777778	212 Bi
135,8	20156	3,732592593	?	895,7	2723	0,504259259	?
238,4	37080	6,866666667	212 Pb	1095,1	436	0,080740741	207 Bi?
335,7	10023	1,856111111	228 Ac	1436,0	441	0,081666667	40 K
402,6	3603	0,667222222	228 Ac	1565,6	796	0,147407407	214 Bi?
456,4	3553	0,657962963	212 Bi				

A55: MWT von Orangit nach der "Extraktion" in Wasser, 5400 s, NaI

v. Kurzzeitmessungen der "Extraktionen"

A56: γ -Spektrum der Kurzzeitmessung der "Extraktion" von sek. Uranerz in Schwefelsäure, 7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung
62,78	205	0,028472222	234 Pa
92,39	272	0,037777778	234 Th
185,81	145	0,020138889	235 U
1460,02	61	0,008472222	40 K

A57: MWT der Kurzzeitmessung der "Extraktion" von sek. Uranerz in Schwefelsäure, 7200 s, Ge(Li)

A58: γ -Spektrum der Kurzzeitmessung der "Extraktion" von sek. Uranerz in Schwefelsäure, 5400 s, Nal

Energie (keV)	Counts/t	Counts/s	Zuordnung
23,8	697	0,129074074	231 Pa?
599	202	0,037407407	?
1457,6	81	0,015	40 K

A59: MWT der Kurzzeitmessung der "Extraktion" von sek. Uranerz in Schwefelsäure, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
13,42	595	0,082638889	234 Pa	327,86	134	0,018611111	228 Ac
74,62	779	0,108194444	214 Pb	338,38	360	0,05	228 Ac
76,93	826	0,114722222	214 Pb	409,70	61	0,008472222	228 Ac
87,13	446	0,061944444	214 Pb	463,59	90	0,0125	228 Ac
89,76	408	0,056666667	214 Pb/ 212 Pb	480,35	35	0,004861111	
93,38	426	0,059166667	235 U	510,90	102	0,014166667	208 Tl
99,63	225	0,03125	228 Ac	583,16	283	0,039305556	208 Tl
114,76	198	0,0275	234 Pa?	727,31	71	0,009861111	212 Bi?
128,91	262	0,036388889	228 Ac	830,04	25	0,003472222	234 Pa
209,16	248	0,034444444	228 Ac	860,88	37	0,005138889	208 Tl
238,76	1275	0,177083333	212 Pb	910,57	220	0,030555556	228 Ac
270,65	143	0,019861111	223 Ra	969,13	137	0,019027778	228 Ac
299,59	97	0,013472222	227 Th				

A61: MWT der Kurzzeitmessung der "Extraktion" von Orangit in Salzsäure, 7200 s, Ge(Li)

A62: γ -Spektrum der Kurzzeitmessung der "Extraktion" von Orangit in Salzsäure, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
14,74	1167	0,162083333		238,76	440	0,061111111	212 Pb
63,11	1074	0,149166667	234 Pa	242,05	590	0,081944444	214 Pb
74,62	1280	0,177777778	214 Pb	295,31	1072	0,148888889	214 Pb
76,93	1430	0,198611111	214 Pb	338,05	141	0,019583333	228 Ac
83,84	798	0,110833333	226 Ra	352,18	1612	0,223888889	214 Pb
87,13	776	0,107777778	214 Pb	511,23	66	0,009166667	208 Tl
92,39	1566	0,2175	234 Th	583,16	113	0,015694444	208 Tl
98,31	484	0,067222222	234 Pa	609,44	897	0,124583333	214 Bi
143,71	396	0,055	235 U	768,01	94	0,013055556	214 Bi
154,71	361	0,050138889	223 Ra?	1000,62	50	0,006944444	214 Bi
186,14	1209	0,167916667	235 U	1120,62	129	0,017916667	214 Bi
236,46	238	0,033055556	227 Th	1763,69	87	0,012083333	214 Bi

A65: MWT der Kurzzeitmessung der "Extraktion" von Pechblende in Salzsäure, 7200 s, Ge(Li)

A66: γ-Spektrum der Kurzzeitmessung der "Extraktion" von Pechblende in Salzsäure, 7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,7	801	0,148333333	234 Pa	353,6	1275	0,236111111	214 Pb
45,3	2002	0,370740741	214 Pb	609,5	612	0,113333333	214 Bi
77,6	5445	1,008333333	214 Pb	768,2	142	0,026296296	214 Bi
94,2	5389	0,997962963	234 Th/ 234 Pa	1116,2	139	0,025740741	214 Bi
188,8	2663	0,493148148	235 U	1456,5	103	0,019074074	40 K
242,0	1881	0,348333333	214 Pb	1759,1	29	0,00537037	214 Bi
296,6	1307	0,242037037	214 Pb				

A67: MWT der Kurzzeitmessung der "Extraktion" von Pechblende in Salzsäure, 5400 s, Nal

Kurzzeitmessungen der Proben 1-3 (Ge(Li) und NaI) vi.

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
10,79	504	0,07	214 Pb	271,31	541	0,075138889	234 Pa
13,75	5241	0,727916667	234 Pa	295,31	6552	0,91	214 Pb
46,33	1191	0,165416667	210 Pb	329,83	339	0,047083333	227 Th
63,11	1780	0,247222222	234 Pa	351,85	9952	1,382222222	214 Pb
74,62	3594	0,499166667	214 Pb	462,28	188	0,026111111	228 Ac
76,93	4589	0,637361111	214 Pb	609,44	5795	0,804861111	214 Bi
80,88	1798	0,249722222	226/223 Ra	665,59	247	0,034305556	214 Bi
83,84	1820	0,252777778	226/223 Ra	768,67	498	0,069166667	214 Bi
87,13	2479	0,344305556	214 Pb	786,06	201	0,027916667	214 Pb
89,76	1757	0,244027778	214 Pb	806,41	165	0,022916667	214 Bi
92,39	2962	0,411388889	234 Th	934,04	310	0,043055556	214 Bi

94,69	2143	0,297638889	234 Pa	1001,60	129	0,017916667	214 Bi
98,31	2556	0,355	234 Pa	1120,29	892	0,123888889	214 Bi
110,81	1356	0,188333333	234 Pa	1154,71	140	0,019444444	214 Bi
114,43	1006	0,139722222	234 Pa	1237,95	333	0,04625	214 Bi
143,38	1041	0,144583333	235 U	1377,17	221	0,030694444	214 Bi
163,45	749	0,104027778	235 U	1407,30	130	0,018055556	214 Bi
185,81	3580	0,497222222	235 U	1460,34	341	0,047361111	40 K
235,80	631	0,087638889	227 Th	1728,03	118	0,016388889	214 Bi
242,05	3330	0,4625	214 Pb	1764,01	526	0,073055556	214 Bi
269,34	537	0,074583333	228 Ac				
A69: MWT der Kurzzeitmessung von sek. Uran, 7200 s, Ge(Li)							

A70: γ -Spektrum der Kurzzeitmessung von sek. Uran, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
29,9	4678	0,649722222	231 Pa	608,2	2421	0,33625	214 Bi
45,8	4323	0,600416667	210 Pb	769,7	504	0,07	214 Bi
77,1	10425	1,447916667	214 Pb	925,3	341	0,047361111	234 Pa
149,7	5459	0,758194444	235 U?	1115,0	458	0,063611111	214 Bi
188,4	6010	0,834722222	235 U	1237,2	219	0,030416667	214 Bi
243,0	4827	0,670416667	214 Pb	1377,8	215	0,029861111	214 Bi
296,2	4905	0,68125	214 Pb	1748,5	192	0,026666667	214 Bi
353,2	5336	0,741111111	214 Pb				

A71: MWT der Kurzzeitmessung von sek. Uran, 5400 s, Nal

A72: γ -Spektrum der Kurzzeitmessung von Orangit, 7200 s, Ge(Li)

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
10,47	645	0,089583333	214 Pb	338,38	3735	0,51875	228 Ac
13,42	3697	0,513472222	234 Pa	351,85	388	0,053888889	214 Pb
20,33	3994	0,554722222	227 Th	409,37	698	0,096944444	228 Ac
74,62	5355	0,74375	214 Pb	462,93	1082	0,150277778	228 Ac
76,93	6195	0,860416667	214 Pb	510,90	1532	0,212777778	208 Tl
84,17	2489	0,345694444	228 Th	558,53	213	0,029583333	?
87,13	3967	0,550972222	214 Pb	583,16	4709	0,654027778	208 Tl
89,76	6035	0,838194444	214 Pb	610,09	223	0,030972222	214 Bi
93,38	7584	1,053333333	235 U	727,31	995	0,138194444	212 Bi
99,30	6287	0,873194444	228 Ac	755,54	242	0,033611111	234 Pa
117,76	890	0,123611111	234 Pa	772,60	250	0,034722222	228 Ac
128,91	1328	0,18444444	228 Ac	786,06	239	0,033194444	214 Pb
153,91	857	0,119027778	223 Ra ?	795,25	482	0,066944444	228 Ac
209,16	2113	0,293472222	228 Ac	835,61	235	0,032638889	228 Ac
238,43	18208	2,528888889	212 Pb	860,88	455	0,063194444	208 Tl
241,06	2279	0,316527778	224 Ra	911,40	2315	0,321527778	228 Ac
270,33	1538	0,213611111	223 Ra	964,87	471	0,065416667	228 Ac
277,23	1047	0,145416667	208 Tl	969,13	1383	0,192083333	228 Ac
300,24	1438	0,199722222	227 Th	1460,02	344	0,047777778	228 Ac
327,86	1193	0,165694444	228 Ac	1587,02	152	0,021111111	228 Ac
332,13	472	0,065555556	227 Th ?				

A73: MWT der Kurzzeitmessung von Orangit, 7200 s, Ge(Li)

A74: γ -Spektrum der Kurzzeitmessung von Orangit, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,6	969	0,134583333	227 Th	511,6	1425	0,197916667	208 Tl
43,1	3284	0,456111111	212 Pb	582,8	2195	0,304861111	208 Tl
75,9	10756	1,493888889	214 Pb	724,4	791	0,109861111	212 Bi
94,1	11002	1,528055556	235 U	903,5	987	0,137083333	228 Ac
240,5	10647	1,47875	224 Ra	1100,7	183	0,025416667	228 Ac?
338,8	3319	0,460972222	228 Ac	1451,8	163	0,022638889	40 K
405,6	1412	0,196111111	228 Ac	1580,8	194	0,026944444	228 Ac
462,4	1398	0,194166667	228 Ac				

A75: MWT der Kurzzeitmessung von Orangit, 5400 s, NaI

Energie (keV) Counts/t Counts/s Zuordnung Forts. 0,151666667 214 Pb 300,24 0,108055556 227 Th 11,12 1092 778 9687 1,345416667 234 Pa 338,38 920 228 Ac 13,75 0,127777778 210 Pb 351,85 46,33 2114 0,293611111 18767 2,606527778 214 Pb 0,457083333 63.11 3291 234 Th/ 234 Pa 389,00 595 0,082638889 214 Bi 72.32 211 Bi 469.83 0,047777778 214 Bi 4617 0.64125 344 1.055277778 214 Pb 510.90 0.064166667 208 Tl 74.62 7598 462 76,93 1,067777778 214 Pb 583,49 0,087361111 208 Tl 7688 629 80,88 0,429861111 226 Ra 609,44 214 Bi 3095 11700 1,625 83,84 4115 0,571527778 226 Ra 665,26 456 0,063333333 214 Bi 87,13 4825 0,670138889 214 Pb 702,69 247 0,034305556 211 Pb 89,76 4023 0,55875 214 Pb 727,31 212 0,029444444 212 Bi 92,39 5700 0,791666667 234 Th 768,67 1023 0,142083333 214 Bi 94,69 5936 0,82444444 234 Pa 786,06 360 0,05 214 Pb 98,31 7711 1,070972222 234 Pa 794,92 186 0,025833333 228 Ac 105,22 0,282361111 235 U 806,41 2033 319 0,044305556 214 Bi 0,464722222 838,57 111,14 3346 234 Pa 0,030138889 217 214 Bi 0,274027778 911,40 114,43 1973 234 Pa 336 0,046666667 228 Ac 143,71 1591 0,220972222 235 U 934,04 530 0,073611111 214 Bi 154,57 1526 0,211944444 964,54 207 223 Ra? 0,02875 228 Ac 0,737222222 1120,29 185,81 5308 1762 0,244722222 235 U 214 Bi 205,22 0,156527778 1155,04 0,040138889 1127 289 214 Bi 235 U 1237,62 235,80 1275 0,177083333 625 0,086805556 214 Bi 227 Th 238,43 2324 0,322777778 212 Pb 1281,20 199 0,027638889 214 Bi 242,05 5731 0,795972222 214 Pb 1377,17 0,058888889 214 Bi 424 255,86 0,120972222 227 Th 1401,87 167 0,023194444 214 Bi 871 0,035555556 258,82 1001 0,139027778 1460,22 256 40 K 234m Pa 0,153611111 228 Ac 269,34 1106 1728,03 211 0,029305556 214 Bi 271,31 999 0,13875 228 Ac 1763,36 0,133194444 214 Bi 959 295,31 214 Pb 1864,74 0,019305556 214 Bi 11740 1,630555556 139

A76: γ -Spektrum der Kurzzeitmessung von Pechblende, 7200 s, Ge(Li)

A77: MWT der Kurzzeitmessung von Pechblende, 7200 s, Ge(Li)

A78: γ -Spektrum der Kurzzeitmessung von Pechblende, 5400 s, NaI

Energie (keV)	Counts/t	Counts/s	Zuordnung	Forts.			
19,8	3547	0,492638889	227 Th	503,6	1440	0,2	208 Tl?
44,2	9015	1,252083333	212 Pb	606,6	4612	0,640555556	214 Bi
76,6	29120	4,04444444	214 Pb	765,7	1045	0,145138889	214 Bi
97,5	28455	3,952083333	234 Pa	926,6	874	0,121388889	234 Pa
150,4	9956	1,382777778	234 Pa	1112,1	1000	0,138888889	214 Bi
187,9	11639	1,616527778	235 U	1232,2	511	0,070972222	214 Bi
242,2	10028	1,392777778	214 Pb	1374,4	514	0,071388889	214 Bi
295,5	10136	1,407777778	214 Pb	1479,0	346	0,048055556	40 K
352,3	13781	1,914027778	214 Pb	1743,5	505	0,070138889	214 Bi

A79: MWT der Kurzzeitmessung von Pechblende, 5400 s, NaI

Abb.	Abbildung
bzw.	beziehungsweise
d	Durchmesser
engl.	Englisch
evtl.	eventuell
FET	Feldelektronentransistor (Abbildung 5)
folg.	folgende, folgendes, folgender, folgenden, folgendem
Ge(Li)	Germanium-Lithium-Detektor
ggf.	gegebenenfalls
Gl.	Gleichung
h	Höhe (Maße der Kapsel)
HV	Hochspannung (2000 V)
i.d.R.	in der Regel
lt.	Laut
mind.	mindestens
0.g.	oben genannt, oben genannten, oben genanntem, oben genanntes
MWT	Messwerttabelle
Nr.	Nummer
S.	Seite
sek.	sekundäres, sekundäre, sekundären, sekundärem
sog.	so genannten
u.a.	und andere, unter anderem, unter anderen
usw.	und so weiter
z.B.	zum Beispiel

b. Verzeichnis verwendeter Abkürzungen

VI. Eigenständigkeitserklärung

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbstständig ohne fremde Hilfe verfasst und die dafür verwendete Literatur vollständig verzeichnet habe.

Daniel Metzsch Berlin, 21.09.2007

VII. Literaturverzeichnis

[1]	Bundesamt für Strahlenschutz (BfS): "Strahlenthemen"					
	www.bfs.de/bfs/druck/strahlenthemen/STTH_Roentgen.pdf	am 15.08.2007				
[2]	Bundesamt für Strahlenschutz (BfS): "Natürliche Radio Nahrungsmitteln", Salzgitter, 2004 http://www.bfs.de/ion/nahrungsmittel/nahrung.html	aktivität in am 13.08.2007				
[3]	Knoll, Glenn F.: "Radiation Detection and Measurement Wiley-VCH, 3. Auflage, Weinheim, 2000	"				
[4]	http://www.seilnacht.com/Lexikon/92Uran.html	am 08.09.2007				
[5]	http://s198491610.online.de/3.html	am 18.09.2007				
[6]	http://www.chemie.at/pub/uranylnitrat-hexahydrat.asp	am 18.09.2007				
[7]	http://atom.kaeri.re.kr/gamrays.html	am 18.09.2007				
[8]	Erdtmann, G.; Soyka, W.: "The gamma rays of Radionuclides" Verlag Chemie GmbH; 1. Auflage, Weinheim und New York; 1970					
[9]	Herforth, L.; Koch, H.: "Praktikum der Radiochemie und Radioaktivität" Barth Verlagsgesellschaft mbH, 3. Auflage, Leipzig, 1992					
[10]	Abram, U.: "Grundlagen der Radiochemie" Vorlesungsskript, Freie Universität Berlin					
[11]	Abram, U.; Hagenbach, A.: "Radiochemisches Praktiku Skript zum radiochemischen Grundpraktikum, Freie Un	m" iversität Berlin				
[12]	Schützig, U.; Schrader H.: "Halbwertszeiten und Photonen-Emissions- wahrscheinlichkeiten von häufig verwendeten Radionukliden" PTB-Bericht (PTB-Ra-16/5), Braunschweig, 1998					
[13]	Bemmerer, D.: "γ-Spektrometrie" (Physikalisches F-Praktikum) Technische Universität Berlin, Inst. für Atomare Physik, 2004 http://kern.physik.tu-berlin.de/Lehre/FP-Gamma-Skript.pdf am 13.08.2007					
[14]	Lieser, K. H.: "Einführung in die Kernchemie" Wiley-VCH, 3. Auflage, Weinheim, 1991					
[15]	Hollemann, A. F.; Wiberg, E.: "Lehrbuch der Anorganis Walter de Gruyter & Co.; 101. Auflage; Berlin und New	chen Chemie" v York; 1995				
[16]	"Strahlenschutz in Schulen" gem. RdErl. d. MK. u. d. M	U vom 12.7.2005				

http://arbeitsschutz.nibis.de/seiten/themen/strahlenschutz/medien/StrlSch_Erl_05_09_28 _komplett.pdf am 13.09.2007

- [17] Wieghaus, A.; Ritzel, S.: "Messtechnik und Gammspektrometrie" Universität Marburg, Grundpraktikum der Kernchemie http://staff-www.uni-marburg.de/%7Ekernchem/grundp/messtechnik/messtechnik.htm am 13.09.2007
- [18] http://www.pse118-online.de/89-Ac.htm am 13.09.2007
- [19] Richter, W.; Kador, L.: "Alpha- und Gammaspektroskopie" Physikalisches Institut der Universität Bayreuth, Physik. F-Praktikum www.praktika.physik.uni-bayreuth.de/Alpha_Gamma_Spektroskopie.pdf am 13.09.2007
- [20] Schulze, G.; Simon, J.: "Maßanalyse"Walter de Gruyter & Co.; 16. Auflage; Berlin; 2003
- [21] Riedel, E.: "Anorganische Chemie" (Schwarzer Riedel) Walter de Gruyter & Co.; 5. Auflage; Berlin; 2003
- [22] Hoffmann, P.; Lieser, K. H.: "Methoden der Kern- und Radiochemie" Wiley-VCH, 1. Auflage, Weinheim, 1991